Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.
Đáp án C
A={1;2;3;4;6;12} và B={1;2;3;6;9;18}
Khi đó A ∩ B={1;2;3;6}
vì \(2^n-1\) là số nguyên tố nên tổng các ước của \(2^n-1\) là \(1+2^n-1\)
tổng các ước của \(2^{n-1}\left(2^n-1\right)\) là \(\displaystyle\Sigma ^{n-1}_{i=0}(2^i)\times (1+2^n-1)\)\(=\left(2^n-1\right)\times2^n=2\left[2^{n-1}\left(2^n-1\right)\right]\)
Vậy số đã cho là số hoàn hảo
Đáp án: C
M là tập hợp các số nguyên chia hết cho 2. N là tập hợp các số nguyên chia hết cho 6. Các số chia hết cho 6 chắc chắn phải chia hết cho 2, ngược lại các số chia hết cho 2 thì chưa chắc chia hết cho 6. Do đó N ⊂ M => M ∩ N = N
=> A sai, C đúng.
P = {1; 2}; Q = {1; 2; 3; 6}. Do đó P ⊂ Q => P ∩ Q = P => B, D sai.
Đáp án: A
M là tập hợp các số nguyên chia hết cho 10. N là tập hợp các số nguyên chia hết cho 2. Các số chia hết cho 10 chắc chắn phải chia hết cho 2, ngược lại các số chia hết cho 2 thì chưa chắc chia hết cho 10. Do đó M ⊂ N => M ∩ N => A đúng, C sai.
P = {1; 3; 5; 15}; Q = {1; 2; 3; 5; 6; 10; 15; 30}. Do đó P ⊂ Q => P ∩ Q = P => B, D sai