\(n^3+n-2\) .  Tìm số tự nhiên n sao cho M là lập phương một số tự nhiên.

 ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

AI KẾT BN KO!

TIỆN THỂ TK MÌNH LUÔN NHA!

KONOSUBA!!!

AI TK MÌNH MÌNH TK LẠI 3 LẦN.

26 tháng 9 2017

kết bạn ko

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

10 tháng 12 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

              

28 tháng 2 2018

Đặt P = n4 + n3 + n2 + n + 1 

Với n = 1 => A = 3 => loại

Với n \(\ge\)2 ta có: 

(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2 

=> 4A = (2n2 + n)2 

Vậy: n = 2 thỏa mãn đề bài

*P/s: Mik ko chắc*

26 tháng 7 2020

Đáp án sai mà mn

Thay n=2 ta có

\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương

29 tháng 8 2019

Đặt \(n^2+18n+2020=a^2\)

\(\Leftrightarrow\left(n^2+18n+81\right)+1939=a^2\)

\(\Leftrightarrow\left(n+9\right)^2+1939=a^2\)

\(\Leftrightarrow\left(a+n+9\right)\left(a-n-9\right)=1939=7\cdot277\)( e dùng casio ạ )

\(TH1:\hept{\begin{cases}a+n+9=7\\a-n-9=277\end{cases}}\Leftrightarrow\hept{\begin{cases}a+n=-2\\a-n=286\end{cases}}\Leftrightarrow2n=-288\Leftrightarrow n=-144\left(KTM\right)\)

\(TH2:\hept{\begin{cases}a+n+9=277\\a-n-9=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a+n=268\\a-n=16\end{cases}}\Leftrightarrow2n=252\Leftrightarrow n=126\left(TM\right)\)

Vậy \(n=126\)