Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_{\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\times\left(m+n\right)\Rightarrow p^2=m^2+m\times n-m-n\Rightarrow p^2=m^2+m\times n-m-2\times n}\)
Vậy A\(=p^2-n=m^2+m\times n-m-2\times n\)
Đáp án C
* log 1 16 x xác định khi x > 0
* log 16 log 1 16 x xác định khi log 1 16 x > 0 = log 1 16 1 ⇔ 0 < x < 1
* log 1 4 log 16 log 1 16 x xác định khi
log 16 log 1 16 x > 0 = log 16 1 ⇒ log 1 16 x > 1 = log 1 16 1 16 ⇒ x < 1 16
* log 4 log 1 4 log 16 log 1 16 x xác định khi
log 1 4 log 16 log 1 16 x > 0 = log 1 4 1 ⇒ log 16 log 1 16 x < 1 = log 16 16
⇒ log 1 16 x < 16 = log 1 16 1 16 16 ⇒ x > 1 16 16
* log 1 2 log 4 log 1 4 log 16 log 1 16 x xác định khi
log 4 log 1 4 log 16 log 1 16 x > 0 = log 4 1
⇒ log 1 4 log 16 log 1 16 x > 1 = log 1 4 1 4 ⇒ log 16 log 1 16 x < 1 4 = log 16 2
⇒ log 1 16 x < 2 = log 1 16 1 16 2 ⇒ x > 1 16 2
Kết hợp tất cả các điều kiện ta được
1 16 2 < x < 1 16 ⇒ D = 1 16 2 ; 1 16 ⇒ b − a = 15 256 ⇒ m + n = 271
Chọn C.
Phương pháp: Giải các phương trình đã cho.
Cách giải: Ta có:
\(\frac{m}{n}\) = (1+\(\frac{1}{1998}\)) + (\(\frac{1}{2}\)+ \(\frac{1}{1997}\))+...+ (\(\frac{1}{999}\)+\(\frac{1}{1000}\)) ( có 999 cặp)
\(\frac{m}{n}\)= \(\frac{1999}{1.1998}\)+ \(\frac{1999}{2.1997}\) +...+ \(\frac{1999}{999.1000}\)
Gọi mẫu số chung của 999 phân số trên là K
=> \(\frac{m}{n}\)= \(\frac{1999.999}{K}\) Mà 1999 là số nguyên tố nên khi rút gọn thì ở tử số vẫn còn 1999.
Vậy m=1999n. => m chia hết cho 1999.
Chọn B
Cách giải: Ta có:
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0
Đáp án C
Ta có C m 2 = 153 ⇒ m = 18
Suy ra C 18 n = C 18 n + 2 ⇒ n = 18 - n + 2 ⇒ n = 8 ⇒ m + n = 26 .
Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
\(m;n\in N\Rightarrow m;n\ge0\)
\(p\) là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)
Do \(\left(m-1\right)\) và \(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)
Lưu ý: \(m-1< m+n\left(1\right)\)
Vì \(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\) và \(p^2(2)\)
Từ \((1)\) và \(\left(2\right)\) ta có \(m-1=1\) và \(m+n=p^2\)
\(\Rightarrow m=2\) và\(2+n=p^2\)
Vậy\(A=p^2-n=2\)