K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

25 tháng 1 2017

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)

19 tháng 3 2016

\(_{\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\times\left(m+n\right)\Rightarrow p^2=m^2+m\times n-m-n\Rightarrow p^2=m^2+m\times n-m-2\times n}\)

Vậy A\(=p^2-n=m^2+m\times n-m-2\times n\)

10 tháng 7 2018

Đáp án C

*   log 1 16 x xác định khi  x > 0

*   log 16 log 1 16 x xác định khi   log 1 16 x > 0 = log 1 16 1 ⇔ 0 < x < 1

*   log 1 4 log 16 log 1 16 x xác định khi

log 16 log 1 16 x > 0 = log 16 1 ⇒ log 1 16 x > 1 = log 1 16 1 16 ⇒ x < 1 16

*   log 4 log 1 4 log 16 log 1 16 x xác định khi

log 1 4 log 16 log 1 16 x > 0 = log 1 4 1 ⇒ log 16 log 1 16 x < 1 = log 16 16  

⇒ log 1 16 x < 16 = log 1 16 1 16 16 ⇒ x > 1 16 16

*   log 1 2 log 4 log 1 4 log 16 log 1 16 x xác định khi

log 4 log 1 4 log 16 log 1 16 x > 0 = log 4 1

⇒ log 1 4 log 16 log 1 16 x > 1 = log 1 4 1 4 ⇒ log 16 log 1 16 x < 1 4 = log 16 2

  ⇒ log 1 16 x < 2 = log 1 16 1 16 2 ⇒ x > 1 16 2

Kết hợp tất cả các điều kiện ta được

1 16 2 < x < 1 16 ⇒ D = 1 16 2 ; 1 16 ⇒ b − a = 15 256 ⇒ m + n = 271

 

20 tháng 9 2017

Chọn C.

Phương pháp: Giải các phương trình đã cho.

Cách giải: Ta có: 

2 tháng 6 2018

21 tháng 3 2016

\(\frac{m}{n}\) = (1+\(\frac{1}{1998}\)) + (\(\frac{1}{2}\)\(\frac{1}{1997}\))+...+ (\(\frac{1}{999}\)+\(\frac{1}{1000}\))  ( có 999 cặp)

\(\frac{m}{n}\)\(\frac{1999}{1.1998}\)\(\frac{1999}{2.1997}\) +...+ \(\frac{1999}{999.1000}\)

Gọi mẫu số chung của 999 phân số trên là K 

=> \(\frac{m}{n}\)\(\frac{1999.999}{K}\)  Mà 1999 là số nguyên tố nên khi rút gọn thì ở tử số vẫn còn 1999.

Vậy m=1999n. => m chia hết cho 1999.

13 tháng 9 2018

Chọn B

Cách giải: Ta có:

log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n   c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0

7 tháng 6 2019

Đáp án C

Ta có  C m 2 = 153 ⇒ m = 18

Suy ra C 18 n = C 18 n + 2 ⇒ n = 18 - n + 2 ⇒ n = 8 ⇒ m + n = 26 .