\(\in\) N*, a \(\in\) Z. Chứng minh (am)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

(am)n = am.am.........am (n thừa số am)

= am+m+m+.....+m (n số hạng m)

= am.n (đpcm)

10 tháng 8 2015

(a^m)^n = (a.a.a..a)^n ( m số a ) 

 = a^n . a^n . a^n ....a^n  ( m số a^n)

= a^n+n+n+...+n ( m số n )

=a^m.n  ( ĐPCM)

4 tháng 7 2017

a) (am)n = am.am.am.......am (n lần am) =am.n

b) Ta có: ( - 2)3000= 23000 = (23)1000=81000

              ( -3)2000= 32000= ( 32)1000 =91000

Vì 8<9 nên 81000<91000

Vậy ( -2)3000 < ( -3)2000

                   

4 tháng 7 2017

Bài 1a) Đó là công thức lũy thừa của lũy thừa rồi bạn:

\(\left(a^m\right)^n=a^{m\cdot n}\)

1b) \(\left(-2\right)^{3000}=2^{3000}\)

\(\left(-3\right)^{2000}=3^{2000}\)

\(\Rightarrow2^{3000}=\left(2^3\right)^{1000}\)

\(\Rightarrow3^{2000}=\left(3^2\right)^{1000}\)

\(2^3< 3^2\)

\(\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)

25 tháng 9 2016

a) am = an

=> am - an = 0

=> an.(am-n - 1) = 0

=> an = 0 hoặc am-n - 1 = 0

=> a = 0 hoặc am-n = 1

=> a = 0 hoặc m - n = 0

=> m = n

b) am > an

=> am - an > 0

=> an.(am-n - 1) > 0

=> an và am-n - 1 cùng dấu

Mà a > 0 => an > 0 => am-n - 1 > 0

=> am-n > 1

=> m - n > 0

=> m > n

8 tháng 9 2015

Ta có 

mn(m^2 - n^2) 
= mn[ (m^2 - 1) - (n^2 - 1) ] 
= m(m^2 - 1)n - mn(n^2 - 1) 
= (m - 1)m(m + 1)n - m(n - 1)n(n + 1) 
Vì (m - 1)m(m + 1) là tích của 3 số nguyên liên tiếp nên nó chia hết cho 2 và 3.

Mà (2 , 3) = 1 => (m - 1)m(m + 1) chia hết cho 6 => (m - 1)m(m + 1)n chia hết cho 6.

Chứng minh tương tự ta được m(n - 1)n(n + 1) chia hết cho 6 
=> (m - 1)m(m + 1)n - m(n - 1)n(n + 1) chia hết cho 6 

Do đó m.n(m2 - n2) chia hết cho 6

8 tháng 9 2015

vì việt làm đúng

ngốc vậy

3,

b, Có : abcd = 100ab + cd

= 100.2.cd + cd

= 200cd + cd

= ( 200 + 1 ). cd

= 201. cd

= 3.67 + cd

suy ra abcd chia hết cho 67.

a, Có : abc = abc0

abc0 = 1000a + bc0

= 999a + a + bc0

= 999a + bca

= 27.37a + bca

Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27

suy ra 27. 37a + bca chia hết cho 27

suy ra bca chia hết cho 27.

30 tháng 6 2017

a)Ta có
\(m^2+105^n+2^{105}=m^2+\left(...5\right)+2^{104}.2\)
\(m^2+\left(...5\right)+\left(...6\right).2\)
\(m^2+\left(...5\right)+\left(...2\right)\)
\(m^2+\left(...7\right)\)
Ta có
m2 luôn có tận cùng là 1;4;5;6;9
\(\Rightarrow m^2+\left(...7\right)\ne\left(...0\right)\)
=> m2+(...7) không chia hết cho 10

Hay \(m^2+105^n+2^{105}\)không chia hết cho 10
Câu b tương tự

20 tháng 6 2017

Mình ko biết sory

6 tháng 8 2017

nhìn mà ko muốn nghĩ luôn

21 tháng 7 2017

a2+b2 chia hết cho3

mà a2;b2 chia 3 dư 0;1

=>a2;b2 chia hết cho 3

=>a;b chia hết cho 3

=>đpcm