\(m\) là số nguyên dương nhỏ hơn \(30\) . Có bao nhiêu gi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

gọi a và b là 2 số nguyên . Ta có :

\(\left(x+a\right)\left(x+b\right)=x^2+mx+72\)

\(\Leftrightarrow x^2+\left(a+b\right)x+ab=x^2+mx+72\)

\(\Leftrightarrow\begin{cases}a+b\\ab=72\end{cases}\)

dễ thấy a,b phải cùng dấu , hơn nữa vì m>0 nên a,b là các số nguyê3n dương 

Không giảm tích tổng quát , giả sử \(a\le b\)  ta có bẳng sau :

 

   
a123468
b72362418129
m733827221817

vì m<30 nên ta tìm được 4 giá trị của m => m={27;22;18;17}

 

  
       
       

 

 

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

4 tháng 7 2018

Ta có

\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1

\(1=1\cdot1=-1\cdot\left(-1\right)\)

\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)

Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)

=> Ta thấy A=1 hoặc A=-1 là không thể

=> A=-3 hoặc A=3

Đặt phép tính cho từng trường hợp ta được

\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)

4 tháng 9 2018

đi rồi bày cho

4 tháng 9 2018

\(C=x^4-x^3+2x^2-11x-5\)

   \(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)

   \(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)

   \(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)

Bài này phải dùng phương pháp hệ số bất định (bài này khó)

C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất với đa thức C thì phải giải 4 cái sau:

\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)

Giải (4) trước (vì \(b,d\in Z\)

Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)

Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

4 tháng 9 2018

đi rồi bày cho