Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a>3 a ko chia hết cho 3
=> a=3k+1 hoặc 3k+2
Xét a=3k+1
(3k+1)2=3k+1.3k+1=9.(k2)+6k-1
=> th 3k+1 thì a2-1 chia hết cho 3
Nếu m2-1 chia hết cho 8
thì m2-1=8k
=>m2=8k+1
=> m2 có tận cùng = 1;3;5;7;9
=> m2 có tận cùng =1;5;9
=> m có tận cùng =1;3;5;7;9
Th: a=3k+2
a2+1=3k+2.3k+2+1
=9.(k2)+6k+4+6k-1
=> a=3k+2
thỏa mãn
=> m+1 thỏa mãn
nhưng th
m=4
=> với m có tc =1;3;5;9;7 thì số đó chia hết cho 24 với m tc 9 mà m khác 9
thì số đó chia hết cho 9
mk ko thể cm đc vì gs n=4 => 15 ko chia hết cho 24
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24
a) Ta có : M = 3 + 32 + 33 + ... + 3100
=> M = (3 + 32) + (33 + 34) + ... + (399 + 3100)
=> M = 12 + 32(3 + 32) + ... + 398(3 + 32)
=> M = 12 + 32.12 + ... + 398.12
=> M = 12(1 + 32 + ... + 398) \(⋮\)12
Do 12 = 3 . 4 \(⋮\)4 => M \(⋮\)4
b) Ta có: 2m + 3 = 3
=> 2m = 3 - 3
=> 2m = 0
=> m = 0 : 2
=> m = 0
xét m tận cùng bằng 0 hoặc 5=>mn chia hết cho 5
xét m lẻ=>m4 có tận cùng bằng 1
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
xét m chẵn=>m4 có tận cùng bằng 6
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
từ các dữ liệu trên=>mn chia hết cho 5
=>đpcm
Hình như bạn viết đề bài sai hay sao ý, theo ý của mình là: \(\left(p-1\right).\left(p+1\right)⋮24\)
Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => \(\left(p-1\right).\left(p+1\right)⋮24\)\(\left(ĐPCM\right)\)
HT
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ.
=>(p+1) và (p-1) là 2 số chẵn liên tiếp.
=> (p+1).(p-1) chia hết cho 8. (1)
Mặt khác, vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 ; 3k+2 ( đ/k: k thuộc N* )
TH1: Với p=3k+1 => (p+1).(p-1)= (3k+2).3k chia hết cho 3.(vì 3k chia hết cho 3)
TH2: Với p=3k+2 => (p+1).(p-1)= 3.(k+1).(3k-1) chia hết cho 3 (vì 3k chia hết cho 3)
Từ 2 TH trên => (p+1).(p-1) chia hết cho 3 (2)
Từ (1) và (2) => (p+1).(p-1) chia hết cho 8 và chia hết cho 3.
Mà (8,3)=1 => (p+1).(p-1) chia hết cho 8.3=24
=> (p+1).(p-1) chia hết cho 24.
Vậy (p+1).(p-1) chia hết cho 24.
CHÚC BẠN HOK TỐT!!!!
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
Bậy rồi nha!
4 lớn hơn 3 mà:
42 - 1 hay 42-1 (nếu cái trước không pphair ý bạn) cũng đâu chia hết cho 24 đâu.
* CM m^2-1\(⋮\)3
vì 1 SCP :3 dư 0 hoặc 1 mà m là SNT >3=>m^2:3 dư 1=>m^2-1\(⋮\)3 (1)
*CM m^2-1\(⋮\)8
vì 1 SCP :8 dư 0,1,4 mà p là SNT >3 => m^2:8 dư 1 => m^2-1\(⋮\)8(2)
từ (1) và (2) và (3,8)=1=> m^2-1\(⋮\)24=>ĐPCM