Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cdot M=\frac{2\sqrt{x}+1}{\sqrt{x}-3}=\frac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}\)
\(\cdot M\inℤ\Leftrightarrow\frac{7}{\sqrt{x}-3}\in Z\Leftrightarrow7⋮\left(\sqrt{x}-3\right)\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(\sqrt{x}\) | \(4\) | \(2\) | \(10\) | \(-4\) |
\(x\) | \(16\) | \(4\) | \(100\) | Loại vì \(\sqrt{x}\ge0\) |
Vậy \(x\in\left\{4;16;100\right\}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(P=\frac{x-3\sqrt{x}-x-9}{x-9}.\frac{x\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(P=\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{x\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(P=\frac{-3x}{2\left(\sqrt{x}+2\right)}\)
Trả lời:
\(M=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(M\inℤ\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\frac{4}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Vậy \(x\in\left\{1,4,16,25,49\right\}\) thì \(M\inℤ\)
Đk: x \(\ge\)0; x \(\ne\)9
M = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để M nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
<=> \(4⋮\sqrt{x}-3\)<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do \(\sqrt{x}-3\ge-3\) => \(\sqrt{x}-3\in\left\{\pm1;\pm2;4\right\}\)
Lập bảng:
Vậy ....