K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(n\inℕ\left(n\ne-4\right)\)

b) Để M nguyên 

\(\Rightarrow\frac{5}{n+4}\)Cũng nguyên

\(\Leftrightarrow5⋮n+4\)

\(\Leftrightarrow n+4\inƯ\left(5\right)\)

       \(Ư\left(5\right)=\left\{1;5\right\}\)

\(\Leftrightarrow\orbr{\begin{cases}n+4=1\\n+4=5\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-3\\n=1\end{cases}}}\)

Mình làm ko chắc nha ,sai thì thông cảm

DT
14 tháng 6 2023

a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)

b) Để A nhận giá trị nguyên âm lớn nhất 

\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)

c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)

Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)

Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.

d) Mình nghĩ bạn thiếu đề ạ 

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

25 tháng 2 2020

M = 3n-1/n-1 nguyên

=> 3n - 1 chia hết cho n - 1

=> 3n - 3 + 2 chia hết cho n - 1

=> 3(n - 1) + 2 chia hết cho n - 1

=> 2 chia hết cho n - 1

=> n - 1 thuộc Ư(2)

=> n - 1 thuộc {-1;1-2;2}

=> n thuộc {0; 2; -1; 3}

25 tháng 2 2020

làm cách khác đc ko vậy

8 tháng 11 2018

\(Tacó\)

\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)

\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)

b, \(K=\frac{2}{3+4n}\)

\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)

11 tháng 8 2019

a) Để A là phân số

\(\Rightarrow n-1\ne0\)

\(\Rightarrow n\ne1\)

=> A là phân số khi \(n\ne1\)

b) Vì \(n\inℤ\)

\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)

mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)

\(\Rightarrow3n-3+7⋮n-1\)

\(\Rightarrow3\left(n-1\right)+7⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

nên \(7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)\)

\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(n-1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(2\)\(0\)\(8\)\(-6\)

Vậy \(n\in\left\{2;0;8;-6\right\}\)

1 tháng 8 2017

 \(M=\frac{2n-7}{n-5}=2\frac{n-\frac{7}{2}}{n-5}=2\left(\frac{n-5+\frac{3}{2}}{n-5}\right)\)

\(=2\left(\frac{n-5}{n-5}+\frac{\frac{3}{2}}{n-5}\right)=2\left(1+\frac{\frac{3}{2}}{n-5}\right)\)

\(=2+\frac{2.\frac{3}{2}}{n-5}=2+\frac{3}{n-5}\)

M nguyên => \(\frac{3}{n-5}\) nguyên => \(n-5\inƯ\left(3\right)\in\left\{1;3;-1;-3\right\}\)

                                                    => \(n\in\left\{6;4;8;2\right\}\)

1 tháng 8 2017

Ta có \(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)

Để M nguyên thì \(n-5\inƯ\left(3\right)\Rightarrow n-5\in\left\{-3;-1;1;3\right\}\)

\(n-5\)\(-3\)\(-1\)\(1\)\(3\)
\(n\)\(2\)\(4\)\(6\)\(8\)

Vậy \(n\in\left\{2;4;6;8\right\}\)thì M nguyên