Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n \(\in\) N => \(\left\{{}\begin{matrix}6n-3\in Z\\6n-3\ne0\\4n-6\in Z\\4n-6\ne0\end{matrix}\right.\)
=> M là phân số
Ta có :
M = \(\dfrac{6n-3}{4n-6}\)
=> 2M = \(\dfrac{2\left(6n-3\right)}{4n-6}=\dfrac{2\left(6n-3\right)}{2\left(2n-3\right)}=\dfrac{6n-3}{2n-3}=\dfrac{6n-3-6+6}{2n-3}=\dfrac{6n-\left(3+6\right)+6}{2n-3}=\dfrac{6n-9}{2n-3}+\dfrac{6}{2n-3}=3+\dfrac{6}{2n-3}\)Vì M lớn nhất => 2M lớn nhất
=> \(3+\dfrac{6}{2n-3}\) lớn nhất
=> \(\dfrac{6}{2n-3}\)lớn nhất
=> \(\dfrac{6}{2n-3}\) > 0 và lớn nhất
=> 2n - 3 > 0 và nhỏ nhất ( vì 6 > 0 )
Vì n \(\in\) N => \(\left\{{}\begin{matrix}2n-3\in Z\\2n-3\ne0\\\left(2n-3\right)⋮̸2\end{matrix}\right.\)
=> 2n - 3 là số nguyên dương nhỏ nhất không chia hết cho 2
=> 2n - 3 = 1
=> 2n = 3 + 1
=> 2n = 4
=> n = 4 : 2
=> n = 2
Khi đó : M = \(\dfrac{6.2-3}{4.2-6}=\dfrac{9}{2}=4,5\)
Vậy n = 2 thì M có giá trị lớn nhất là 4,5
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
+) Vì : \(2n+3⋮d;2\in N\)
\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)
Mà : \(4n+1⋮d\)
\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)
\(\Rightarrow\) d là ước của 5 ; d nguyên tố
\(\Rightarrow d=5\)
Với \(d=5\Rightarrow4n+1⋮5\)
\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)
Vì : \(n\in N\Rightarrow5n⋮5\)
\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)
Thử lại : n = 5k + 1 ( \(k\in N\))
\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)
\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)
\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được
\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản
Vậy \(n\ne5k+1\)
Hai câu cuối tương tự
\(M=\frac{6n-3}{4n-6}=\frac{6n-9+6}{4n-6}=\frac{3\left(2n-3\right)}{2\left(2n-3\right)}+\frac{6}{4n-6}\)
\(M=\frac{3}{2}+\frac{6}{4n-6}\)
Để M lớn nhất , \(\frac{6}{4n-6}\)là số dương lớn nhất => 4n - 6 là số dương nhỏ nhất mà n là số tự nhiên
=> 4n - 6 = 2 => n = 2
a) Ta có :
\(Q=\dfrac{6n-1}{3n+2}=\dfrac{2\left(3n+2\right)-5}{3n+2}=2-\dfrac{5}{3n+2}\)
Để Q có giá trị nguyên thì :
\(5⋮3n+2\)
\(\Leftrightarrow3n+2\inƯ\left(5\right)\)
Ta có bảng :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\dfrac{-1}{3}\) | \(-1\) | \(1\) | \(\dfrac{-7}{3}\) |
\(Đk\) \(n\in Z\) | loại | tm | tm | loại |
Vậy \(n\in\left\{-1;1\right\}\) là giá trị cần tìm
\(M=\frac{6n-3}{4n-6}=\frac{3.\left(2n-2\right)+3}{3.\left(2n-2\right)}=1+\frac{3}{3.\left(2n-2\right)}=1+\frac{1}{2n-2}\)
Để M có GTLN \(\Leftrightarrow\)\(\frac{1}{2n-2}\) có GTLN
\(\Leftrightarrow\)2n-2 là số nguyên dương nhỏ nhất
\(\Leftrightarrow n=2\)