Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(m;0\right)\Rightarrow\overrightarrow{NM}=\left(m+28;-3\right)\)
\(\Rightarrow MN^2=\left(m+28\right)^2+9\)
\(MN=57\Leftrightarrow\left(m+28\right)^2+9=57^2\)
\(\Rightarrow\left[{}\begin{matrix}m=-28+18\sqrt{10}\\m=-28-18\sqrt{10}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}M\left(-28+18\sqrt{10};0\right)\\M\left(-28-18\sqrt{10};0\right)\end{matrix}\right.\)
\(\overrightarrow{AC}=\left(2;-2\right)=2\left(1;-1\right)\) ; \(\overrightarrow{BC}=\left(6;2\right)=2\left(3;1\right)\) ; \(\overrightarrow{BA}=\left(4;4\right)=4\left(1;1\right)\)
Phương trình đường cao AE vuông góc BC và đi qua A:
\(3\left(x-0\right)+1\left(y-3\right)=0\Leftrightarrow3x+y-3=0\)
Phương trình đường cao BF qua B và vuông góc AC:
\(1\left(x+4\right)-1\left(y+1\right)=0\Leftrightarrow x-y+3=0\)
H là giao điểm AE và CF nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x+y-3=0\\x-y+3=0\end{matrix}\right.\) \(\Rightarrow H\left(0;3\right)\)
b/ \(\overrightarrow{AC}.\overrightarrow{BA}=2.4-2.4=0\Rightarrow AC\perp AB\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow\) tâm đường tròn ngoại tiếp là trung điểm BC \(\Rightarrow O\left(-1;0\right)\)
c/ M là trung điểm AC \(\Rightarrow M\left(1;2\right)\) ; N là trung điểm AB \(\Rightarrow N\left(-2;1\right)\)
\(\Rightarrow\overrightarrow{MB}=\left(5;3\right)\Rightarrow\) pt đường thẳng BM:
\(3\left(x-1\right)-5\left(y-2\right)=0\Leftrightarrow3x-5y+7=0\)
\(\overrightarrow{NC}=\left(4;0\right)=4\left(1;0\right)\) \(\Rightarrow\) pt đường thẳng CN:
\(0\left(x+2\right)+1\left(y-1\right)=0\Rightarrow y-1=0\)
G là giao điểm BM và CN nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-5y+7=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow G\left(-\frac{2}{3};1\right)\)
d/ Gọi P là trung điểm AB \(\Rightarrow P\left(3;\frac{1}{2}\right)\)
Trung trực của AB vuông góc AB nên nhận (2;1) là 1 vtpt
Phương trình trung trực AB:
\(2\left(x-3\right)+1\left(y-\frac{1}{2}\right)=0\Leftrightarrow4x+2y-13=0\)
Trung trực AC qua N và vuông góc AC nên nhận \(\left(1;-2\right)\) là 1 vtpt
Pt trung trực AC:
\(1\left(x-\frac{3}{2}\right)-2\left(y-1\right)=0\Leftrightarrow2x-4y+1=0\)
Tâm đường tròn ngoại tiếp là giao điểm 2 trung trực nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}4x+2y-13=0\\2x-4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
e/ \(AB=\sqrt{5}\) ; \(AC=\sqrt{5}\) ; \(BC=\sqrt{10}\)
\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow cosB=\frac{AB}{BC}=\frac{\sqrt{5}}{\sqrt{10}}=\frac{1}{\sqrt{2}}\Rightarrow B=45^0\)
b/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{1}{2};\frac{3}{2}\right)=\frac{1}{2}\left(1;3\right)\)
\(\Rightarrow\) Đường thẳng AM nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AM:
\(3\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-6=0\)
c/N là trung điểm AC nên \(N\left(\frac{3}{2};1\right)\)
Đường thẳng MN song song BC nên nhận \(\left(1;3\right)\) là 1 vtpt
Phương trình MN:
\(1\left(x-\frac{3}{2}\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-\frac{9}{2}=0\)
Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
b: Tọa độ điểm A là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}-x+1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Tọa độ điểm B là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-1\\-x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Tọa độ điểm C là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
để M giao N là một khoảng thì \(\left[{}\begin{matrix}a>=-4\\a+3< =6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>=-4\\a< =3\end{matrix}\right.\)