Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + .... + 99 . 100 + 100 . 101
3D=1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 )+ 4 . 5 + ( 6 - 3) + .... + 99. 100 . ( 101 - 98 ) + 100 . 101 . ( 102 - 99 )
3D=1 . 2 . 3+2 . 3 . 4-1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + 4 . 5 . 6 - 3 . 4 . 5 + ..... + 99 . 100 . 101- 98 . 99 . 100 +100 . 101 . 102-99.100.101
3D = 100 . 101 . 102
D = \(\frac{100.101.102}{3}=343400\)
E = \(2+2^3+2^5+2^7+...+2^{2017}+2^{2019}\)
4E = \(2^3+2^5+2^7+2^9...+2^{2019}+2^{2021}\)
=> 4E - E = \(2^3+2^5+2^7+2^9...+2^{2019}+2^{2021}\)- ( \(2+2^3+2^5+2^7+...+2^{2017}+2^{2019}\))
=> 3E = \(2^{2021}-2\)
=> E = \(\frac{2^{2021}-2}{3}\)
\(2020+2019+...+\left(x+2\right)+\left(x+1\right)+x=2020\)
\(\Leftrightarrow2019+2018+...+\left(x+1\right)+x=0\)
Xét dãy :\(A=2019+...+\left(x+1\right)+x\)
Dãy gồm \(\left(2020-x\right)\) số hạng
Có :\(A=\frac{\left(2019-x\right)\left(2020-x\right)}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2019+x=0\\2020-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2019\\x=2020\end{matrix}\right.\)
\(\left(x-7\right)\left(x+2019\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+2019=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-2019\end{cases}}\)
\(9-25=\left(7-x\right)-\left(25+7\right)\)
\(\Leftrightarrow-16=7-x-25-7\)
\(\Leftrightarrow-x=-16+25\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\)
\(2\left(4x-2x\right)-7x=15\)
\(\Leftrightarrow4x-7x=15\)
\(\Leftrightarrow x=-5\)
a ) 9 - 25 = ( 7 - x ) - ( 25 + 7 )
9 - 25 = 7 - x - 25 - 7
9 - 25 - 7 + 25 + 7 = -x
9 = - x
=> x = -9
Vậy x = -9
b) 2 . ( 4x - 2x ) - 7x = 15
8x - 4x - 7x = 15
-3x = 15
x = 15 : ( - 3 )
x = -5
Vậy x = -5
c ) ( x - 7 ). ( x + 2019 ) = 0
=> x - 7 = 0 hoặc x + 2019 = 0
=> x = 7 hoặc x = - 2019
vậy x \(\in\){ 7 ; -2019 }
(1 - 1/2) x (1 - 1/3) x ( 1- 1/4)x ......x( 1- 1/2019)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2018}{2019}\)
= \(\frac{1.2.3.....2018}{2.3.4.....2019}\) (Rút gon)
= \(\frac{1}{2019}\)
Dấu . là dấu nhân nhé!
2A=22+23+....+22022)
2A-A=(22+23+...+22022)-(2+22+....+22021)
A=22022-2
Đây nhé!
\(D=2^{2019}-\left(1+2+2^2+...+2^{2018}\right)\)
Đặt \(D=2^{2019}-A\)
=> \(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
=> \(D=2^{2019}-2^{2019}+1\)
\(D=1\)
Xét mẫu :
Đặt P = 1 + 2 + ... + 22017
=> 2P = 2 + 22 + ... + 22018
=> 2P - P = ( 2 + 22 + ... + 22018 ) - ( 1 + 2 + ... + 22017 )
=> P = 22018 - 1
=> M = \(\frac{2^{2019}-2}{2^{2018}-1}\)
\(M=1+2+...+2^{2017}\)
\(\Rightarrow2M=2+2^2+...2^{2018}\)
\(\Rightarrow2M-M=\left(2+2^2+...+2^{2018}\right)-\left(1+2+...+2^{2017}\right)\)
\(\Rightarrow M=2^{2018}-1\)
\(\Rightarrow M=\frac{2^{2019}-2}{2^{2018}-1}\)
\(k.nha\)