Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA co
22b=1+1/22+1/2^4+...+1/2^96+1/2^98
b=1/2^2+1/2^4+1/2^6+.......+1/2^98+1/2^100
tu 2 dong tren tru ve theo ve TA co 3b=1-1/200
suy ra b=1/1/200 /3=1/3-1/200 /3 be hon 1/3
nen b be hon 1/3
Đặt \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)là A
Ta có :A = \(\frac{1}{2}\left(1-\frac{1}{2^{100}}\right)\)
Vì 1-...
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
Ta có : \(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)
=> 32.A = \(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^8}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)
Lấy (2) cộng (1) theo vế ta có :
32.A + A = \(\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\right)+\left(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\right)\)
10A = \(1-\frac{1}{3^{100}}\)
=> A = \(\left(1-\frac{1}{3^{100}}\right):10=\frac{1}{10}-\frac{1}{3^{100}.10}=0,1-\frac{1}{3^{100}.10}< 0,1\)
=> A < 0,1 (ĐPCM)