Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy: \(27309\equiv 2\pmod 7\)
\(\Rightarrow A\equiv 2^{10}+2^{20}+2^{30}+...+2^{100}\pmod 7\)
Lại có:
\(2^3\equiv 1\pmod 7\)
\(\Rightarrow 2^{10}=(2^3)^3.2\equiv 1^3.2\equiv 2\pmod 7\)
\(\Rightarrow \left\{\begin{matrix} 2^{20}\equiv 2^2\pmod 7\\ 2^{30}\equiv 2^3\pmod 7\\ ......\\ 2^{100}\equiv 2^{10}\pmod 7\end{matrix}\right.\)
Do đó: \(A\equiv 2+2^2+..+2^{10}\pmod 7\)
\(A\equiv 2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)+2^{10}\pmod 7\)
\(A\equiv 2.7+2^4.7+2^7.7+2^{10}\pmod 7\)
\(A\equiv 2^{10}\equiv 2\pmod 7\)
Vậy $A$ chia $7$ dư $2$
P/s: Không chắc lắm nha,dạng này mình chủ yếu dùng casio thôi á!
Lời giải
\(6^8\equiv8\left(mod28\right);100\equiv16\left(mod28\right)\)
Suy ra \(6^8+100\equiv8+16\equiv24\left(mod28\right)\)
Suy ra \(\left(6^8+100\right)^2\equiv24^2\equiv16\left(mod28\right)\)
Đến đây dễ rồi,xét số dư của 16 cho 28 là xong.
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
TH1. Nếu m = 0 => x = -5/2
TH2. Nếu m khác 0 , xét Xét \(\Delta'=\left(m+1\right)^2-m\left(m-5\right)=7m+1\)
Để pt có nghiệm duy nhất thì \(\Delta'=0\)
=> 7m+1 = 0 => m = -1/7
Vậy \(m\in\left\{-\frac{1}{7};0\right\}\) thì pt có nghiệm duy nhất.