\(M = 1 + 2^{2} + 2^{3} + ... +2^{50}\) và \(N = 2^{51}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

2M = 2+2^3+2^4+......+2^51

M = 2M - M = 2+2^3+2^4+.....+2^51 - (1+2^2+2^3+.....+2^51)

                   = 2+2^51 - 1 - 2^2

                   = 2^51 - 3

=> M < N

Tk mk nha

14 tháng 8 2019

a, f(-2)=(m^2-2).(-2)^2+2(m^2-1)=140

=(m^2-2).4+2m^2-2=140

=4m^2-8+2m^2-2=140

=6m^2-10=140

=6m^2=150

=m^2=25

=> m=+-5

14 tháng 8 2019

b, h(3)-2h(1)=(n^3-2).3+2.(n^3-1)-3-2[(n^3-2).1+2(n^3-1)-3]=11

=3n^3-6+2n^3-2-3-2n^3+4-4n^3+4+6=11

=-n^3+3=11

=-n^3=8(loại)

vậy ko tìm đc n

24 tháng 8 2020

\(B=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\)

\(\frac{1}{1.1.3}+\frac{2}{2.3.5}+\frac{3}{3.5.7}+\frac{4}{4.7.9}+...+\frac{100}{100.199.201}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{199.201}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{199}-\frac{1}{201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}< \frac{1}{2}< \frac{2}{3}\)

=> B < 2/3

AH
Akai Haruma
Giáo viên
25 tháng 6 2020

Đúng rồi bạn nhé.

25 tháng 6 2020

cảm ơn b

15 tháng 4 2017

1.

a, (x-5)2

Ta có x2 luôn \(\ge\) 0 với mọi x, suy ra: (x-5)2 \(\ge\) 0 với mọi x

Nên: (x-5)2 \(\ge\) 0 với mọi x

Suy ra: đa thức này không có nghiệm.

11 tháng 8 2017

\(\left(3^{n+2}+2^{n+2}+3^n+2^n\right)\) (đã sửa đề)

\(=3^n.3^2-2^n.2^2+3^n+2^n\)

\(=3^n.9+2^n.4+3^n.1+2^n.1\)

\(=3^n\left(9+1\right)+2^n\left(4+1\right)\)

\(=3^n.10+2^n.5\) \(⋮10\)

\(\rightarrowđpcm\)

20 tháng 9 2017

Tại sao phải sửa đề ???

28 tháng 3 2019

Bài 1

A = \(\frac{17}{3}\)a\(x^2y^2+2x^2y^2\)

a) A \(\ge0\Leftrightarrow=\frac{17}{3}ax^2y^2+2x^2y^2\ge0\)

\(Taco:2x^2y^2\ge0;17x^2y^2\ge0\)

=> Để A \(\ge0\) thì a\(\ge0\)

b) Tương tự , ta có giá trị a thỏa mãn là

\(a\le0\)

c) Với a = 3 thì A \(=19x^2y^2=171\)

\(\Rightarrow x^2y^2=9\)

\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=-3\end{matrix}\right.\)

Vậy các cặp số x, y thỏa mãn là \(\left(x;y\right)\in\left\{x;y|xy=3\right\}\) hoặc

\(\left(x;y\right)\in\left\{x;y|xy=-3\right\}\)

28 tháng 3 2019

Bài 2

a)B \(\ge0\Leftrightarrow5ax^2y^2+3x^2y^2\ge0\)

Ta có

\(5x^2y^2\ge0;x^2y^2\ge0\)

=> B \(\ge0\) khi \(a\ge0\)

b) Tương tự , giá trị cần tìm là a\(\le0\)

c) Thay a = 2 , ta có

B \(=-10x^2y^2+3x^2y^2=-28\Rightarrow-7x^2y^2=-28\)

\(\Rightarrow x^2y^2=4\)

\(\Rightarrow\left\{{}\begin{matrix}xy=2\\xy=-2\end{matrix}\right.\)

Vậy các cặp số (x;y) thỏa mãn là (x;y ) \(\in\left\{x;y|xy=2\right\}\)

Hoặc \(\left(x;y\right)\in\left\{x;y|xy=-2\right\}\)

22 tháng 2 2018

Bài 2: Em tham khảo bài tương tự tại đây nhé.

Câu hỏi của Dang Khanh Ngoc - Toán lớp 7 - Học toán với OnlineMath

1 tháng 3 2018

Bài 1 ai lm ik cho mk tham khảo nữa

3 tháng 8 2020

Gửi lẻ những câu hỏi để nhanh nhận được câu trả lời nha bạn ơi