K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) AM là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)\(\Rightarrow\widebat{BM}=\widebat{CM}\)

=> M là điểm chính giữa cung BC

=> OM _|_ BC (đpcm)

b) AN là phân giác \(\widehat{CAt}\)

=> \(\widehat{tAN}=\widehat{NAC}\)mà \(\widehat{tAN}=\widehat{NCB}\)(Tứ giác ANCB nội tiếp)

                                    và \(\widehat{NAC}=\widehat{NMC}\)(tứ gics ANCB nội tiếp)

=> \(\widehat{NCB}=\widehat{NMC}\)

Xét tam giác NCD và tam giác NMC có:

\(\widehat{MNC}\)chung

\(\widehat{NCB}=\widehat{NMC}\left(cmt\right)\)

=> Tam giác NCD đồng dạng với tam giác NMC (g.g)

=> \(\widehat{NCM}=\widehat{NDC}\)mà \(\widehat{NDC}=90^o\)và \(\widehat{NCM}=90^o\)

=> NC _|_ CM

Xét tam giác NCM nội tiếp có NC _|_ CM

=> NM là đường kính

=> N,O,M thẳng hàng

c) Tam giác MAN nội tiếp đường kín MN

=> AM _|_ AN => Tam giác KAD vuông tại A

Xét tam giác KAD vuông tại A có AI là đường trung bình

=> AI=ID

=> Tam giác AID cân tại A

=> \(\widehat{IAD}=\widehat{IDA}\)(tính chất tam giác cân) hay \(\widehat{IAB}+\widehat{BAD}=\widehat{IDA}\)

Lại có \(\widehat{DAC}+\widehat{DCA}=\widehat{IDA}\)(tính chất góc ngoài)

\(\Rightarrow\widehat{IAB}+\widehat{BAD}=\widehat{DAC}+\widehat{DCA}\)

mà \(\widehat{BAD}=\widehat{DAC}\)(AD là phân giác) => \(\widehat{IAB}=\widehat{DCA}\)

mà 2 góc này nằm ở vị trí góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung

=> IA là tiếp tuyến của (O) 

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM

9 tháng 6 2020

Có thể giải gúp tôi được không / 

Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ? 

11 tháng 6 2021

Từ câu a Bạn chứng minh tiếp OC là phân giác góc O => COA = COM 

Lại có MBA = 1/2 góc ACM

    <=> MBA = CAO mà 2 góc này ở vị trí đồng vị => đpcm

11 tháng 6 2021

a)vì CM là tiếp tuyến của (O)

suy ra :CM +OM,CA+OA suy ra CMOA nội tiếp đường tròn đường kính CO

Tương tự suy ra DOMD nội tiếp

mình chỉ biết làm ý a thôi tịck đúng cho mình nha