Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ quả định lý thales:
\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)
Áp dụng BĐT bunyakovsky:
\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)
\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)
dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)
b) chưa nghĩ :v
Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
A B C M I r D E F
a) Gọi tâm của đường tròn nội tiếp \(\Delta\)ABC là I. (I) tiếp xúc với BC,CA,AB tại D,E,F
Ta có \(S_{BIC}=\frac{1}{2}ID.BC=r.\frac{BC}{2}\). Tương tự \(S_{CIA}=r.\frac{CA}{2};S_{AIB}=r.\frac{AB}{2}\)
Vậy \(S_{ABC}=r.\frac{BC+CA+AB}{2}=pr\)(đpcm).
b) Đặt \(BC=a,CA=b,AB=c,AM=m_A,BM=m_B,CM=m_C\)
Áp dụng công thức tính đường trung tuyến có \(m_A=\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{2}\)
\(\Rightarrow\frac{1}{m_A}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}\), Hoàn toàn tương tự đối với \(m_B,m_C\)
Từ đó \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{2}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)
Lại có \(r=\frac{S}{p}=\frac{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{p}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}\)(Công thức Heron)
\(=\frac{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}{2\sqrt{a+b+c}}\)
Kết hợp với giả thiết \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{1}{r}\) suy ra:
\(\frac{1}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{1}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{1}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)
\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)(1)
Áp dụng BĐT Cauchy: \(VT_{\left(1\right)}\le\frac{1}{\sqrt{\left(b+c\right)^2-a^2}}+\frac{1}{\sqrt{\left(c+a\right)^2-b^2}}+\frac{1}{\sqrt{\left(a+b\right)^2-c^2}}\)
\(=\frac{1}{\sqrt{a+b+c}}.\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}+\sqrt{\left(b+c-a\right)\left(c+a-b\right)}+\sqrt{\left(c+a-b\right)\left(a+b-c\right)}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)\(\le\frac{1}{\sqrt{a+b+c}}.\frac{a+b+c}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)
\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}=VP_{\left(1\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)<=> \(\Delta\)ABC đều (đpcm).