K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Chọn B

Cách giải: Ta có:

log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n   c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0

8 tháng 2 2018

Đáp án D

2 tháng 8 2018

3 tháng 3 2017

7 tháng 6 2017

Đáp án đúng : B

27 tháng 1 2018

22 tháng 3 2019

Đáp án D

Gọi điểm I x ; y ; z  sao cho 3 I A ¯ + 2 I B ¯ + I C ¯ = 0 ¯  suy ra điểm I(1;4;-3) 

Xét mặt cầu S : x - 1 2 + y - 1 2 + z - 1 2 = 1  có tâm E(1;1;1) và bán kính R = 1. 

Suy ra I E ¯ = ( 0 ; - 3 ; 4 ) ⇒ I E = 5 > R = 1 . Ta có T = 3 M A ¯ 2 + 2 . M B ¯ 2 + M C ¯ 2 = 3 . M I ¯ + I A ¯ 2 + 2 . M I ¯ + I B ¯ 2 + M I ¯ + I C ¯ 2  

= 6 . M I 2 + 2 . M I ¯ . 3 I A ¯ + 2 I B ¯ + I C ¯ + 3 I A 2 + 2 I B 2 + I C 2 = 6 M I 2 + 3 I A 2 + 2 I B 2 + I C 2 . 

Để tổng T đạt giá trị nhỏ nhất khi và chỉ khi MI nhỏ nhất vì tổng 3 I A 2 + 2 I B 2 + I C 2  không đổi. Suy ra M, E, I thẳng hàng mà IE = 5 và EM = 1 nên ⇒ 5 . E M ¯ = E I ¯ . 

Lại có E I ¯ = 0 ; 3 ; - 4  và E M ¯ = a - 1 ; b - 1 ; c - 1  suy ra  a = 1 5 b - 1 = 3 5 c - 1 = - 4 ⇒ a + b + c = 15 4 .

1 tháng 6 2018

Đáp án A

Mặt cầu (S) có tâm I(1;1;1). Gọi E là điểm thỏa mãn  3 EA → + 2 EB → + EC → = 0 →      ⇒ E 1 ; 4 ; − 3

T = 6 ME 2 + 3 EA 2 + 2 EB 2 + EC 2

T nhỏ nhất khi ME nhỏ nhất <=> M là 1 trong 2 giao điểm của đường thẳng IE và mặt cầu (S).

15 tháng 9 2018

Đáp án D