\(L=\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{403}{3^{100}}.\)

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

hơi khó mình chuyên văn thui hì

25 tháng 7 2017

\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)

\(=3-\left(-1\right)\)

\(=4\)

b)   \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)

       \(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)

     \(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)

      \(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)

    \(=\frac{199}{16}:\left(12-2\right)\)

\(=\frac{199}{16}:10\)

\(=\frac{199}{160}\)

c)   \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)

\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)

\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)

     

25 tháng 7 2017

giờ mk phải đi ngủ r mai mk làm cho 

NV
17 tháng 4 2019

\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow3C=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

Trừ dưới cho trên:

\(2C=1+\frac{2}{3}-\frac{1}{3}+\frac{3}{3^2}-\frac{2}{3^2}+\frac{4}{3^3}-\frac{3}{3^3}+...+\frac{100}{3^{99}}-\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(2C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\Rightarrow2C=B-\frac{100}{3^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3B-3+\frac{1}{3^{99}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\)

\(\Rightarrow2B=3-\frac{1}{3^{99}}\Rightarrow B=\frac{3}{2}-\frac{1}{2.3^{99}}< \frac{3}{2}\)

\(\Rightarrow2C=B-\frac{100}{3^{100}}< B< \frac{3}{2}\Rightarrow C< \frac{3}{4}\)

15 tháng 9 2019

anh tốt ghê đăng lên giúp em đấy

anh đăng lên nhờ người giúp nhưng ko có ai ☹️ ☹️ ☹️

22 tháng 2 2020

ĐCM thằng Huy tham khảo câu hỏi của Lê Thị Thanh Quỳnh

27 tháng 3 2020

Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath

hihi

27 tháng 3 2020

Tú Nhân bạn có hiểu ko giải thích cho mình với!