\(\left(x+\sqrt{x+3}\right)\left(y+\sqrt{y+3}\right)=3\).Tín...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

ta có:\(\left(x+\sqrt{x^2+2007}\right)\left(-x+\sqrt{x^2+2007}\right)=2007\)(1)

\(\left(y+\sqrt{y^2+2007}\right)\left(-y+\sqrt{y^2+2007}\right)=2007\)(2)

nhân 2 vế (1) và (2) với nhau ta được:

\(2007.\left(-x+\sqrt{x^2+2007}\right)\left(-y+\sqrt{y^2+2007}\right)=2007^2\)

\(xy-x\sqrt{y^2+2007}-y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(x^2+2007\right)}=2007\)(3)

theo đề:

\(xy+x\sqrt{y^2+2007}+y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(4)

công 2 vế (3) và (4) với nhau ta được:

\(xy+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)

<=>\(\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007-xy\)

bình phương 2 vế ta được:

\(x^2y^2+2007x^2+2007y^2+2007^2=2007^2-2.2007xy+x^2y^2\)

<=>\(2007.\left(x^2+2xy+y^2\right)=0\)

<=>\(\left(x+y\right)^2=0\)

=>\(x+y=0\)

vậy \(S=0\)

4 tháng 9 2017

Tại sao lại giải như vậy trieu dang

5 tháng 9 2020

a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)

b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)

c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)

d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)

Thiếu ĐKXĐ : ..............

5 tháng 9 2020

a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)

        \(=27-4\sqrt{3x}\)

b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)

        \(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)

        \(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)

        \(=7\sqrt{2x}+28\)

c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)

        \(=\frac{1}{x-y}.\sqrt{6}\)

d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)

        \(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)

        \(=2a.\sqrt{5}\)

23 tháng 10 2020

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

ĐK : \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{x+2\sqrt{xy}+y}{x-y}-\frac{x-2\sqrt{xy}+y}{x-y}\)

\(=\frac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}=\frac{4\sqrt{xy}}{x-y}\)

Với \(\hept{\begin{cases}x=7+2\sqrt{3}\\y=7-2\sqrt{3}\end{cases}}\)( tmđk )

=> \(A=\frac{4\sqrt{\left(7+2\sqrt{3}\right)\left(7-2\sqrt{3}\right)}}{7+2\sqrt{3}-\left(7-2\sqrt{3}\right)}\)

\(=\frac{4\sqrt{7^2-\left(2\sqrt{3}\right)^2}}{7+2\sqrt{3}-7+2\sqrt{3}}\)

\(=\frac{4\sqrt{49-12}}{4\sqrt{3}}\)

\(=\frac{4\sqrt{37}}{4\sqrt{3}}=\frac{\sqrt{37}}{\sqrt{3}}=\frac{\sqrt{37}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{\sqrt{111}}{3}\)

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

18 tháng 10 2020

đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)

Xét y = 0 => PT vô nghiệm

Xét y khác 0:

Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)

\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)

\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)

\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)

Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)

\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)

\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)

\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)

\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)

\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)

Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)

\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)

Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)

\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)

\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)

\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)

\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)

Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)

\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)

\(\Leftrightarrow4\sqrt{x}=13-4x\)

\(\Leftrightarrow16x=169-104x+16x^2\)

\(\Leftrightarrow16x^2-120x+169=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)

Nếu \(x-3=0\Rightarrow x=y=3\)

Vậy ta có 3 cặp số (x;y) thỏa mãn: ...

18 tháng 10 2020

Thử lại ta thấy cặp nghiệm vô tỉ:

\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:

\(x=y=3\)

4 tháng 8 2020

Bài 1 :

\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)

\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)

\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)

Bài 2 : 

1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)

2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)

3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)

\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=\frac{1-\sqrt{3}}{5}\)

4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)

\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)

\(=\frac{7}{4}\)

25 tháng 5 2019

Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.

Theo BĐT AM-GM

\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)

\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)

Tương tự với hai BĐT còn lại và cộng theo vế ta được:

\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)

\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)

Dấu "=" xảy ra khi x =y = z  =1

Vậy...

25 tháng 5 2019

Theo BĐT AM-GM:

\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)

\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)

\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)

=>M​\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033

Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)