\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)

Tính giá trị của b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

 Nhân cả 2 vế của pt ban đầu với \(x-\sqrt{x^2+3}\) được

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\) (1)

Tương tự nhân cả 2 vế của pt ban đầu với \(y-\sqrt{y^2+3}\) được 

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\) (2)

từ (1) và (2) ta có:\(2\left(x+y\right)=0\)

=>x+y=0

=>E=0

18 tháng 5 2016

Có ai ko giúp giùm mk đi

19 tháng 9 2019

làm ra chưa chỉ với bạn

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7

19 tháng 9 2019

làm ra chưa chỉ với bạn

2 tháng 9 2016

Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)

Từ (1) và (2) =>2(x+y)=0

=>x+y=0<=>x=-y

<=>x2013=-y2013

<=>x2013+y2013=0

A=x2013+y2013+1=1

22 tháng 6 2016

nhận liên hợp ta có  \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)

==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)

tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)

trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y

đến đây ok rùi nhé bạn 

13 tháng 7 2018

B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)

Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)

cộng vế theo vế ta được: \(x+y=-x-y\)

\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)

\(\Leftrightarrow x^{2013}+y^{2013}=0\)

13 tháng 7 2018

a,Ta có x =...

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)

x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)

x = 2

sau đó thay x=2 vào A nhé.

A=2014 !!!