Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x+\sqrt[]{x^2+2017}\right)\left(x-\sqrt[]{x^2+2017}\right)=x^2-x^2-2017=-2017\)
Mà \(\left(x+\sqrt[]{x^2+2017}\right)\left(y+\sqrt[]{y^2+2017}=2017\right)\)
Nên \(\sqrt[]{x^2+2017}-x=y+\sqrt[]{y^2+2017}\) (1)
Chứng minh tương tư: \(\sqrt[]{y^2+2017}-y=x+\sqrt[]{x^2+2017}\) (2)
Cộng hai vế của (1) và (2) \(\Rightarrow-x-y=x+y\Rightarrow-2\left(x+y\right)=0\Rightarrow S=x+y=0\)
từ pt đã cho
=> (x - \(\sqrt{x^2+1}\)) (x+\(\sqrt{x^2+1}\)) (y+\(\sqrt{y^2+1}\))
= x - \(\sqrt{x^2-1}\) (x-\(\sqrt{x^2+1}\) luôn khác 0 tự cm)
thu gọn 2 vế
=> - y - \(\sqrt{y^2+1}\) = x -\(\sqrt{x^2+1}\) (1)
tương tự khi nhân 2 vế pt đầu với y - \(\sqrt{y^2+1}\)
=> - x - \(\sqrt{x^2+1}\) = y - \(\sqrt{y^2+1}\) (2)
cộng vế với vế (1) và (2)
=> - 2 (x+y) = 0 => x+y = 0 => x = - y
=>A = 0
Xin phép được sủa đề một chút nhé :)
\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)
\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)
\(=2\left(xy+yz+zx\right)=4034\)
Ta có:(\(\sqrt{x^2+\sqrt{2017}}\)+x)(\(\sqrt{x^2+\sqrt{2017}}\)-x)=\(\sqrt{2017}\)
Từ bài sa suy ra:\(\sqrt{x^2+\sqrt{2017}}-x\)=\(\sqrt{y^2+\sqrt{2017}}\)+y
suy ra: x+y=\(\sqrt{x^2+\sqrt{2017}}-\sqrt{y^2+\sqrt{2017}}\) (1)
CMTT ta có:\(\sqrt{y^2+\sqrt{2017}}-y=\sqrt{x^2+\sqrt{2017}}+x\)
suy ra: x+y=\(\sqrt{y^2+\sqrt{2017}}-\sqrt{x^2+\sqrt{2017}}\) (2)
Từ (1),(2) suy ra x+y=0
Ta có : \(\left\{{}\begin{matrix}\left(x+\sqrt{2017+x^2}\right)\left(\sqrt{2017+x^2}-x\right)=2017\\\left(x+\sqrt{2017+x^2}\right)\left(y+\sqrt{2017+y^2}\right)=2017\end{matrix}\right.\)
\(\Rightarrow\sqrt{2017+x^2}-x=y+\sqrt{2017+y^2}\)
\(\Leftrightarrow x+y=\sqrt{2017+x^2}-\sqrt{2017+y^2}\left(1\right)\)
\(\left\{{}\begin{matrix}\left(y+\sqrt{2017+y^2}\right)\left(\sqrt{2017+y^2}-y\right)=2017\\\left(y+\sqrt{2017+y^2}\right)\left(x+\sqrt{2017+x^2}\right)=2017\end{matrix}\right.\)
\(\Rightarrow\sqrt{2017+y^2}-y=x+\sqrt{2017+x^2}\)
\(\Leftrightarrow x+y=\sqrt{2017+y^2}-\sqrt{2017+x^2}\left(2\right)\)
Lấy (1) + (2) \(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\Leftrightarrow x=-y\)
\(T=x^{2017}+y^{2017}=-y^{2017}+y^{2017}=0\)