Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)
pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)
Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)
A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)
a) Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)
Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)
Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)
Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m
Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)
b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:
\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)
Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)
Vậy...........................
a/
hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình
\(x^2-\left(m-1\right)x-4=0\)
den ta = \(\left(m-1\right)^2+16>0\forall m\)
=> phương trình luôn có 2 nghiệm phân biệt với mọi m
b/
vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p )
=> \(y_1=x_1^2\)
\(y_2=x_2^2\)
theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)
ta có \(y_1+y_2=y_1.y_2\)
<=> \(x_1^2+x_2^2=x_1^2x_2^2\)
<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)
<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)
<=> \(m^2-2m+1+8-16=0\)
<=> \(m^2-2m-7=0\)
<=>\(\left(m-1\right)^2-8=0\)
<=> \(\left(m-1\right)^2=8\)
<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)
<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
CHÚC BẠN HỌC TỐT
Giao trục tung thì x=0, còn C thuộc (d) thì tất nhiên nó phải thỏa mãn y=mx+2 rồi
Ánh Dương
Phương trình hoành độ giao điểm:
\(x^2=mx+2\Leftrightarrow x^2-mx-2=0\) (1)
Do \(ac=-2< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm trái dấu
\(\Rightarrow\) d luôn cắt (P) tại 2 điểm pb nằm về 2 phía trục tung với mọi m
Tọa độ C thỏa mãn: \(\left\{{}\begin{matrix}y=mx+2\\x=0\end{matrix}\right.\) \(\Rightarrow C\left(0;2\right)\)
Từ O hạ OH vuông góc AB \(\Rightarrow\) OH là đường cao chung của \(\Delta OAC\) và \(\Delta OBC\)
\(S_{OAC}=2S_{OBC}\Leftrightarrow\frac{1}{2}OH.AC=2.\frac{1}{2}.OH.BC\Rightarrow AC=2BC\)
\(\Leftrightarrow\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2=4\left(x_B-x_C\right)^2+4\left(y_B-y_C\right)^2\)
\(\Leftrightarrow x_A^2+\left(mx_A+2-2\right)^2=4x_B^2+4\left(mx_B+2-2\right)^2\)
\(\Leftrightarrow\left(m^2+1\right)x_A^2=4\left(m^2+1\right)x_B^2\)
\(\Leftrightarrow x^2_A=4x_B^2\Rightarrow\left[{}\begin{matrix}x_A=2x_B\left(loại\right)\\x_A=-2x_B\end{matrix}\right.\) (loại do \(x_A;x_B\) trái dấu)
Kết hợp Viet ta được:
\(\left\{{}\begin{matrix}x_A+x_B=m\\x_A=-2x_B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x_B=m\\x_A=-2x_B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A=2m\\x_B=-m\end{matrix}\right.\)
Mà \(x_Ax_B=-2\Rightarrow-2m^2=-2\Rightarrow m=\pm1\)
a.
pthdgd
x^2-mx-2=0
∆=m^2+2>o moi m
c/a=-2<0
=>x1<0<x2 moi m => dpcm
a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)
Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình :
\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)
Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)
b, Phương trình hoành độ giao điểm của (d) và (P) là
\(mx^2=\left(m+2\right)x+m-1\)
\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)
Vì m khác 0 nên pt trên là pt bậc 2
Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)
\(=m^2+4m+4+4m^2-4m\)
\(=5m^2+4>0\)
Nên pt trên luôn có 2 nghiệm p/b
hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0
Phương trình hoành độ giao điểm: \(x^2-mx-2=0\)
\(\Delta=m^2+8>0\Rightarrow\) pt luôn có 2 nghiệm pb hay d luôn cắt (P) tại 2 điểm pb
Tọa độ giao điểm của d với trục tung: \(y=m.0+2=2\Rightarrow A\left(0;2\right)\)
Để M, N đối xứng qua A \(\Leftrightarrow A\) là trung điểm MN
\(\Rightarrow x_M+x_N=2x_A\)
\(\Rightarrow m=2x_A=0\)