Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
Ta có : abcdeg = ab.10000 + cd.100 + eg
= ab.9999 + cd.99 + (ab + cd + eg)
= 99(ab.101 + cd) + (ab + cd + eg)
Vì 99(ab.101 + cd) chia hết cho 11 và (ab + cd + eg) chia hết cho 11
Vậy abcdeg chia hết cho 11
a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg
= ab . 9999 + ab + cd . 99 + cd + eg
= ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg
= (ab . 909 + cd . 9) . 11 + (ab + cd + eg)
Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11
a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(=1001\cdot\overline{abc}\)
\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13
Đêm rồi không biết c/m chia hết cho 3 :)
b) \(\overline{aaa}=111\cdot a\)chia hết cho a
c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)
sửa đề
\(a,\overline{abcabc}⋮7;11;13\)
=\(\overline{abc}.1000+\overline{abc}\)
=\(\overline{abc}\left(1000+1\right)\)
= \(\overline{abc}.1001\)
= \(\overline{abc}.7..11.13\)
=> \(\overline{abcabc}⋮7;11;13\)
\(b,\overline{aaa}:a=111\)
\(=>\overline{aaa}⋮a\)
\(c,\overline{abc}⋮\overline{abc}\)
Do \(\overline{abc}=\overline{abc}\)
=> \(\overline{abc}⋮\overline{abc}\)
Câu 1 :
b) [( 3x + 1 )3] = 150 => ( 3x + 1 )3 = 1 => 3x + 1 = 1 => 3x = 0 => x = 0
Câu 2: Theo đề bài thì \(a\equiv b\left(mod7\right)\Rightarrow a-b\equiv0\left(mod7\right)\)
Hay a - b chia hết cho 7 (đpcm)
Nếu cách trên sai thì lấy cách sau chữa liền,thầy khỏi la:v
Do a chia hết cho 7,đặt a = 7k. Do b chia hết cho 7, đặt b = 7h
Khi đó \(a-b=7\left(k-h\right)⋮7\) (đpcm)
Hai cách cùng sai thì mình chịu. (chắc ko có cái này đâu:v)
abcdeg phải chia hết cho 13 chứ bn