Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{x+y+z+3}=\dfrac{3^2}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\)