K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 12 2019
Theo t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{x+y+z+3}=\dfrac{3^2}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\)