K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

\(\left\{{}\begin{matrix}x+y+xy=m\\x^2+y^2=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=m\\\left(x+y\right)^2-2xy=m\end{matrix}\right.\)

Đặt x+y=a, xy=b, hệ phương trình trở thành:

\(\left\{{}\begin{matrix}a+b=m\\a^2-2b=m\end{matrix}\right.\)

a)Với m=5, hệ phương trình trở thành:

\(\left\{{}\begin{matrix}a+b=5\\a^2-2b=5\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=5-a\\a^2-2\left(5-a\right)-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=5-a\\\left[{}\begin{matrix}a=-5\\a=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}a=-5\\b=10\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy S={(2;1);(1;2)}

b) Ta có: \(\left\{{}\begin{matrix}a+b=m\\a^2-2b=m\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1-\sqrt{3m+1}\\b=m+1+\sqrt{3m+1}\end{matrix}\right.\\\left\{{}\begin{matrix}a=-1+\sqrt{3m+1}\\b=m+1-\sqrt{3m+1}\end{matrix}\right.\end{matrix}\right.\)(m\(\ge\)\(\dfrac{-1}{3}\)) (1)

Hệ có nghiệm khi và chỉ khi a2\(\ge\) 4b

\(\Leftrightarrow\)\(\left[{}\begin{matrix}1+2\sqrt{3m-1}+3m-1\ge4m+4+4\sqrt{3m-1}\\1-2\sqrt{3m-1}+3m-1\ge4m+4-4\sqrt{3m-1}\end{matrix}\right.\)

\(\Leftrightarrow\)m\(\ge\)0 (thỏa (1))

Vậy m\(\ge\)0 thì hệ phương trình có nghiệm

3 tháng 1 2019

mình cảm ơn nhiều

24 tháng 8 2021

nhân 2vao pt (1) rồi cộng với pt 2 ta có:

x^2+y^2+2xy+5(x+y)=6+m

=(x+y)^2+5(x+y)=6+m

=t^2+5t=6+m

=t^2+5t-6-m

pt co nghiem duy nhat khi delta=0

tự giải =)))))))))))))))))))))))))))))))))

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

26 tháng 8 2021

m nào

26 tháng 8 2021

đề bài là tìm a nhé

 

26 tháng 8 2021

lấy pt 1-pt 2 ta có

(x-y)=(y^2-x^2)-y+x

(x-y)(1-x-y+1)=0

=>x=y or x+y=2 thay vào hệ rồi giải tiếp

26 tháng 8 2021

sao không giải nốt đi tiếp cái gì?

 

NV
16 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\y\ge-3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y+3}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=m\\a^2-2+b^2-3=2m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=m\\a^2+b^2=2m\end{matrix}\right.\)

\(\Leftrightarrow a^2+\left(m-a\right)^2=2m\)

\(\Leftrightarrow2a^2-2m.a+m^2-2m=0\) (1)

Hệ đã cho có nghiệm khi và chỉ khi (1) có 2 nghiệm không âm

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-2\left(m^2-2m\right)\ge0\\a_1+a_2=m\ge0\\a_1a_2=\dfrac{m^2-2m}{2}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le4\\m\ge0\\\left[{}\begin{matrix}m\ge2\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\2\le m\le4\end{matrix}\right.\)