Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(u_n>0,\forall n\inℕ^∗\).
Ta có \(u_{n+1}-u_n=\dfrac{u_n^2+2021}{2u_n}-u_n=\dfrac{2021-u_n^2}{2u_n}\)
Với \(n\ge2\) thì \(u_n=\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\) \(=\dfrac{u_{n-1}}{2}+\dfrac{2021}{2u_{n-1}}\) \(>2\sqrt{\dfrac{u_{n-1}}{2}.\dfrac{2021}{2u_{n-1}}}\) \(=\sqrt{2021}\)
Vậy \(u_n>\sqrt{2021},\forall n\ge2\), suy ra \(u_{n+1}-u_n=\dfrac{2021-u_n^2}{2u_n}< 0,\forall n\inℕ^∗\)
\(\Rightarrow\) Dãy \(\left(u_n\right)\) là dãy giảm. Mà \(u_n>\sqrt{2021}\) \(\Rightarrow\left(u_n\right)\) có giới hạn hữu hạn. Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\) \(\Rightarrow L=\dfrac{L^2+2021}{2L}\) \(\Leftrightarrow L=\sqrt{2021}\)
Vậy \(\lim\limits_{n\rightarrow+\infty}u_n=\sqrt{2021}\)
Dễ thấy .
Ta có
Với thì
Vậy , suy ra
Dãy là dãy giảm. Mà có giới hạn hữu hạn. Đặt
Vậy
Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ
\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)
\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)
Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ
\(\Rightarrow u_{k-1}\) hữu tỉ
Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ
Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)
Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ
Hay \(u_{2019}\) là số vô tỉ
anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ
Viết lại đề: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{7}\\u_{n+1}=\dfrac{u_n\left(1-u_n^8\right)}{1+u_n}\end{matrix}\right.\)
*Tính \(\lim\limits_{n\rightarrow+\infty}u_n\):
Bằng quy nạp, dễ chứng minh được \(0< u_n< 1,\forall n=1,2,...\)
Ta có \(u_{n+1}-u_n=\dfrac{-u_n^9-u_n^2}{1+u_n}< 0\) nên \(\left(u_n\right)\) là dãy giảm. Mà \(\left(u_n\right)\) bị chặn nên \(\left(u_n\right)\) có giới hạn hữu hạn.
Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\left(0\le L< 1\right)\) thì \(L=\dfrac{L\left(1-L^8\right)}{1+L}\)
\(\Leftrightarrow\left[{}\begin{matrix}L=0\\\dfrac{1-L^8}{1+L}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}L=0\\1-L^8=1+L\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}L=0\\L=-1\end{matrix}\right.\)
\(\Rightarrow L=0\) \(\Rightarrow\lim\limits_{n\rightarrow+\infty}u_n=0\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)
Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)
\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)
\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị
\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)
\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\)
Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)
Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)
\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)
\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)
\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)
\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)
1.
Trước hết bạn nhớ công thức:
$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
Áp vào bài:
\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)
\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)
\(=1.\frac{1}{3}=\frac{1}{3}\)
2.
\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)
\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)
\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)
\(=x+a\)
bỏ ghim chh giùm kon, sợ quá:<