K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

ĐKXĐ :\(b^2\le1\Rightarrow\left|b\right|\le1\Rightarrow\left|b\right|=1\) ???

20 tháng 8 2017

Câu này bác net giải quyết luôn rồi.

Theo đề bài thì

\(\left|b\right|\ge1\)

Theo điều kiện xác định thì

\(1-b^2\ge0\)

\(\Leftrightarrow b^2\le1\)

\(\Leftrightarrow\left|b\right|\le1\)

Từ đây suy ra được

\(\left|b\right|=1\)

Thế vô tìm được a.

PS: Đề bài kể cũng lạ. Còn câu hình tự làm nhé. Lười không làm đâu.

27 tháng 2 2022

a, (3 ; -3)

27 tháng 2 2022

a, Với y >= 0 

hpt có dạng \(\left\{{}\begin{matrix}2x+y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=9\\y=x-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)(ktmđk)

Với y < 0 hpt có dạng 

\(\left\{{}\begin{matrix}2x-y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-6=-9\end{matrix}\right.\)(tm) 

b, bạn tự làm 

c, đk : x>= 3 

\(\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\\sqrt{x+3}-3\left|y-2\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\2\sqrt{x+3}-6\left|y-2\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7\left|y-2\right|=1\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y-2=\dfrac{1}{7}\\y-2=-\dfrac{1}{7}\end{matrix}\right.\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\)

bạn tự giải nốt nhé 

a: ĐKXĐ: y<=1/2

\(\left\{{}\begin{matrix}3\left(x-1\right)-\sqrt{1-2y}=1\\\left(x-1\right)+2\sqrt{1-2y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6\left(x-1\right)-2\sqrt{1-2y}=2\\\left(x-1\right)+2\sqrt{1-2y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7\left(x-1\right)=7\\\left(x-1\right)+2\sqrt{1-2y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=1\\2\sqrt{1-2y}=5-1=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\\sqrt{1-2y}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\1-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

b: 

ĐKXĐ: \(x\in R\)

\(\left\{{}\begin{matrix}\sqrt{x^2-2x+1}-3y=7\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{\left(x-1\right)^2}-3y=7\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left|x-1\right|-3y=7\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\left|x-1\right|-6y=14\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=13\\\left|x-1\right|-3y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{13}{2}\\\left|x-1\right|=3y+7=3\cdot\dfrac{13}{2}+7=\dfrac{39}{2}+7=\dfrac{53}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{13}{2}\\x-1\in\left\{\dfrac{53}{2};-\dfrac{53}{2}\right\}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{13}{2}\\x\in\left\{\dfrac{55}{2};-\dfrac{51}{2}\right\}\end{matrix}\right.\)

c: ĐKXĐ: y>=4

\(\left\{{}\begin{matrix}2\left(x^2-x\right)+\sqrt{y-4}=0\\3\left(x^2-x\right)-2\sqrt{y-4}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(x^2-x\right)+2\sqrt{y-4}=0\\3\left(x^2-x\right)-2\sqrt{y-4}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7\left(x^2-x\right)=-7\\2\left(x^2-x\right)+\sqrt{y-4}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-x=-1\\\sqrt{y-4}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-x+1=0\\y-4=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vôlý\right)\\y=8\end{matrix}\right.\)

=>\(\left(x,y\right)\in\varnothing\)

29 tháng 9 2019

*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.

a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)

Cộng 2 pt ta đc: x=1

Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)

Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)

Những câu sau làm ttự.

#Walker

24 tháng 3 2020

ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?limdim

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

NV
27 tháng 2 2021

a.

ĐKXĐ: \(x;y\ge-1;xy\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\) 

\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)

NV
27 tháng 2 2021

b.

ĐKXĐ: \(x;y\ge1\)

Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)

\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)

Thế vào pt đầu:

\(x+y=5+\dfrac{11-x-y}{2}\)

\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)

Thế xuống pt dưới:

\(\sqrt{x-1}+\sqrt{6-x}=3\)

\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)

\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)

\(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:
a)

Nhân $\sqrt{2}$ vào PT(1) và $\sqrt{3}$ vào PT(2) ta có:

HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{6}x-4y=7\sqrt{2}\\ \sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow (\sqrt{6}x-4y)-(\sqrt{6}x+9y)=13\sqrt{2}\)

\(\Leftrightarrow -13y=13\sqrt{2}\Rightarrow y=-\sqrt{2}\)

\(\Rightarrow x=\frac{7+2\sqrt{2}y}{\sqrt{3}}=\sqrt{3}\)

Vậy..............

b)

Nhân $2+\sqrt{3}$ vào PT(1) và $(\sqrt{2}+1)$ vào PT(2) thu được:

\(\left\{\begin{matrix} (\sqrt{2}+1)(2+\sqrt{3})x-y=2(2+\sqrt{3})\\ (2+\sqrt{3})(\sqrt{2}+1)+y=2(\sqrt{2}+1)\end{matrix}\right.\)

Trừ theo vế:

\(\Rightarrow -2y=2(2+\sqrt{3})-2(\sqrt{2}+1)=2+2\sqrt{3}-2\sqrt{2}\)

\(\Rightarrow y=\sqrt{2}-\sqrt{3}-1\)

\(\Rightarrow x=\frac{2+(2-\sqrt{3})y}{\sqrt{2}+1}=1+\sqrt{2}-\sqrt{3}\)

Vậy.........