\(\left\{{}\begin{matrix}a,b,c>0\\abc\ge1\end{matrix}\right.\)

chứng minh: <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1a:

Ta thấy vế trái là số tự nhiên với mọi $x,y\in\mathbb{N}^*$. Do đó $\sqrt{9x^2+16x+32}\in\mathbb{N}^*$

Điều này xảy ra khi \(9x^2+16x+32\) là số chính phương.

Đặt \(9x^2+16x+32=t^2(t\in\mathbb{N}^*)\)

\(\Leftrightarrow 81x^2+144x+288=9t^2\)

\(\Leftrightarrow (9x+8)^2+224=(3t)^2\Leftrightarrow (3t-9x-8)(3t+9x+8)=224\)

Hiển nhiên $3t+9x+8>0; 3t+9x+8>3t-9x-8$ với mọi $x,t\in\mathbb{N}^*$ và $3t+9x+8; 3t-9x-8$ cùng tính chẵn lẻ.

Do đó \((3t+9x+8; 3t-9x-8)=(16;14); (28;8); (56;4); (112;2)\)

Thử các TH trên ta thu được $x=2$ là kết quả duy nhất thỏa mãn

Thay vào PT ban đầu suy ra $y=\frac{-7}{4}$ (vô lý)

Do đó không tồn tại $x,y$ thỏa mãn.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1b:

ĐKXĐ: \(x\geq \frac{-1}{3}\)

PT \(\Leftrightarrow 4x^3+5x^2+3x+1-\sqrt{3x+1}=0\)

\(\Leftrightarrow 4x^3+5x^2+3x-\frac{3x}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x\left(4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}=0(*)\end{matrix}\right.\)

Xét $(*)$

\(\Leftrightarrow 4x^2+x+4x+1+2-\frac{3}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x(4x+1)+(4x+1)+\frac{2\sqrt{3x+1}-1}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow (4x+1)(x+1)+\frac{3(4x+1)}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}=0\)

\(\Leftrightarrow (4x+1)\left[(x+1)+\frac{3}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}\right]=0\)

Với mọi $x\geq \frac{-1}{3}$ dễ thấy biểu thức trong ngoặc vuông luôn dương. Do đó $4x+1=0\Rightarrow x=\frac{-1}{4}$ (thử lại thấy t/m)

Vậy \(x=0\) hoặc \(x=-\frac{1}{4}\)

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

13 tháng 12 2019

Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma

giúp e vs ạ! Cần gấp!

thanks nhiều!

15 tháng 12 2018

Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)

Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)

hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)

Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)

1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố 2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương 3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\) b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố

2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương

3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\)

b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\)

c) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=3\end{matrix}\right.\). Tìm min \(P=\frac{1}{2xy^2+1}+\frac{1}{2yz^2+1}+\frac{1}{2zx^2+1}\)

d) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=3\end{matrix}\right.\). Tìm max \(P=a\sqrt[3]{b^3+1}+b\sqrt[3]{c^3+1}+c\sqrt[3]{a^3+1}\)

e) \(\left\{{}\begin{matrix}-1\le a,b,c\le1\\0\le x,y,z\le1\end{matrix}\right.\). Max \(P=\left(\frac{1-a}{1-bz}\right)\left(\frac{1-b}{1-cx}\right)\left(\frac{1-c}{1-ay}\right)\)

f) \(\left\{{}\begin{matrix}a,b>0\\a+2b\le3\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\)

g) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=x+y+z+2\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{x^2+2}}+\frac{1}{\sqrt{y^2+2}}+\frac{1}{\sqrt{z^2+2}}\)

h) \(a,b,c>0\). Tìm min \(P=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+2\sqrt{a^2+bc}\)

3
11 tháng 12 2019

3 g) \(xyz=x+y+z+2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)

\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.

Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)

\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)

\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)

11 tháng 12 2019

3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)

\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)

\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

29 tháng 9 2019

*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.

a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)

Cộng 2 pt ta đc: x=1

Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)

Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)

Những câu sau làm ttự.

#Walker

24 tháng 3 2020

ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?limdim

Bài 1: 

a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)

b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)

c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)