Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}14x+4y=50\\14x+7my=112\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}14x+4y=50\\\left(7m-4\right)y=62\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m\ne\frac{4}{7}\)
Khi đó: \(\left\{{}\begin{matrix}y=\frac{62}{7m-4}\\x=\frac{25-2y}{7}=\frac{25m-32}{7m-4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{25m-32}{7m-4}>0\\\frac{62}{7m-4}>0\end{matrix}\right.\) \(\Rightarrow m>\frac{32}{25}\)
Đến đoạn $y=\frac{1}{m-3}; x=\frac{m-4}{m-3}$ bạn làm đúng rồi nhưng đoạn sau có vấn đề. $x< 0; y>0$ là đồng thời xảy ra chứ không rời rạc. Từ đoạn sau giải quyết như sau:
Để \(\left\{\begin{matrix} y>0\\ x< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{m-3}>0\\ \frac{m-4}{m-3}< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m-3>0\\ m-4< 0\end{matrix}\right.\Leftrightarrow 3< m< 4\)
Vậy $3< m< 4$ là đáp án phải tìm.
Ngoài việc trả lời đúng, bạn cố gắng trả lời bằng việc gõ công thức toán để được tick nhé :(
\(\left\{{}\begin{matrix}x+my=2\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)
thay pt (1) vào pt (2) ta duoc:\(\left\{{}\begin{matrix}x+my=2\\mx-\left(x+my\right)y=1\left(3\right)\end{matrix}\right.\)
PT (3) tương đương: \(mx-y^2m-yx-1=0\)
<=>\(-y^2m-yx+mx-1=0\)
\(\Delta=b^2-4ac=x^2-4.\left(-m\right).\left(mx-1\right)=x^2+4m^2x-4m\)
theo Vi-ét ta có:\(\left\{{}\begin{matrix}S=\dfrac{-b}{a}=\dfrac{-x}{m}\\P=\dfrac{c}{a}=\dfrac{-mx+1}{m}\end{matrix}\right.\)
Để pt có hai nghiệm lớn hơn 0<=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)hay \(\left\{{}\begin{matrix}x^2+4m^2x-4m>0\\\dfrac{-x}{m}>0\\\dfrac{-mx+1}{m}>0\end{matrix}\right.\)
tới chỗ này là tìm m được rồi.Chúc bạn học tốt
hệ có nghiệm duy nhất <=> \(\dfrac{1}{m}\ne\dfrac{m}{-2}\)\(\Leftrightarrow m^2\ne-2\) đúng \(\forall m\)
vây hệ luôn có nghiệm duy nhất là x=\(\dfrac{m+4}{m^2+2}\) và y=\(\dfrac{2m-1}{m^2+2}\)
theo giả thiết x>0 , y>0 =>
\(\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+4>0\\2m-1>0\end{matrix}\right.\)vì m2+2>0 \(\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-4\\m>\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow m>\dfrac{1}{2}\)
giải pt theo cách thế \(\Rightarrow\left\{{}\begin{matrix}x=1+\frac{1}{2m+1}>1\\y=\frac{2m}{2m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\2m>0\end{matrix}\right.\) \(\Leftrightarrow m>0\) vậy ...
\(\left\{{}\begin{matrix}x+2y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
từ (2) ==> \(y=mx-m\)
thế vào (1) ==> \(x+2\left(mx-m\right)=2\Leftrightarrow\left(2m+1\right)x=2m+2\Leftrightarrow x=\frac{2m+2}{2m+1}=1+\frac{1}{2m+1}\)
\(\Rightarrow y=m\left(\frac{2m+2}{2m+1}\right)-m=\frac{2m^2+2m}{2m+1}-m=\frac{m}{2m+1}\)
vì \(x>1;y>0\) \(\Rightarrow\left\{{}\begin{matrix}1+\frac{1}{2m+1}>1\\\frac{m}{2m+1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{2m+1}>0\\\frac{m}{2m+1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\m>0\end{matrix}\right.\Leftrightarrow m>0\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\m-y+ym+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\ym=1-m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m-\dfrac{1-m}{m}=\dfrac{m^2+m-1}{m}\\y=\dfrac{1-m}{m}\end{matrix}\right.\)
\(x+2y>0\\ \Leftrightarrow\dfrac{m^2+m-1}{m}+\dfrac{2-2m}{m}>0\\ \Leftrightarrow\dfrac{m^2-m+1}{m}>0\)
Mà \(m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy \(m>0\) thỏa đề