Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT AM - GM
\(A=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)
\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)
\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{a.\frac{1}{2a}}+2\sqrt{b.\frac{1}{2b}}+2\sqrt{\frac{1}{2a}.\frac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu " = " xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Ta co:\(1=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\le\sqrt{2}\)
Ta lai co:
\(A=\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)+2\)
\(\ge2+2\sqrt{2}+2\sqrt{2}-\sqrt{2}+2=4+3\sqrt{2}\)
Dau '=' xay ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Vay \(A_{min}=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho e làm thử ạ:(
\(P=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
\(=\frac{a+b+c+ab+bc+ca+abc+1}{1-\left(a+b+c\right)+ab+bc+ca-abc}\)
\(=1+\frac{2\left(a+b+c\right)+2abc}{1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc}\)
\(=1+\frac{2+2abc}{ab+bc+ca-abc}\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)\rightarrow\left(p,q,r\right)\)
Khi đó \(P=1+\frac{2+2r}{q-r}\)
Áp dụng \(3q\le p^2\Rightarrow q\le\frac{1}{3}\Rightarrow P\ge1+\frac{2+2r}{\frac{1}{3}-r}=1+\frac{6+6r}{1-3r}\)
Sau khi đưa P về 1 biến thì e tịt ngòi r ạ:( Đến đây thì đi kiểu nào cx ngược dấu:(
Ta có: \(a+b+c=1\); a, b , c > 0 => 0 < a; b; c <1
=> \(\hept{\begin{cases}1+a=\left(1-b\right)+\left(1-c\right)\ge2\sqrt{\left(1-b\right)\left(1-c\right)}\\1+b=\left(1-c\right)+\left(1-a\right)\ge2\sqrt{\left(1-c\right)\left(1-a\right)}\\1+c=\left(1-a\right)+\left(1-b\right)\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\end{cases}}\)
=> \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
=> \(P\ge8\)
"=" xảy ra <=> a = b =c = 1/ 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bổ đề \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
Ta có \(A=\left|x-\sqrt{2}\right|+\left|y-1\right|\ge\left|x\right|+\left|y\right|-\left(\left|\sqrt{2}\right|+1\right)\)
\(\Rightarrow A\ge5-\sqrt{2}-1=4-\sqrt{2}\)
Mình mới biết làm Min thôi , thông cảm :>>
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}\)
\(\Leftrightarrow\left[2-\frac{b\left(2a-b\right)}{a\left(b+c\right)}\right]+\left[2-\frac{c\left(2b-c\right)}{b\left(c+a\right)}\right]+\left[2-\frac{a\left(2c-a\right)}{c\left(a+b\right)}\right]\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\ge\frac{9}{2}\)
Áp dụng BĐT Schwarz, ta có :
\(\frac{b^2}{a\left(b+c\right)}+\frac{c^2}{b\left(c+a\right)}+\frac{a^2}{c\left(a+b\right)}\ge\frac{\left(a+b+c\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)( 1 )
\(\frac{ac}{a\left(b+c\right)}+\frac{ab}{b\left(c+a\right)}+\frac{bc}{c\left(a+b\right)}=\frac{c^2}{c\left(b+c\right)}+\frac{a^2}{a\left(a+c\right)}+\frac{b^2}{b\left(a+b\right)}\) ( 2 )
\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ac}\)
Cộng ( 1 ) với ( 2 ), ta được :
\(\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\)
\(\ge\left(a+b+c\right)^2\left(\frac{1}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2+ab+bc+ac}\right)\)
\(\ge\left(a+b+c\right)^2\left(\frac{\left(1+2\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}\right)=\frac{9}{2}\)
không biết cách này ổn không
Ta có : \(\frac{b\left(2a-b\right)}{a\left(b+c\right)}=\frac{2-\frac{b}{a}}{\frac{c}{b}+1}\) ; tương tự :...
đặt \(\frac{a}{c}=x;\frac{b}{a}=y;\frac{c}{b}=z\Rightarrow xyz=1\)
\(\Sigma\frac{2-y}{z+1}\le\frac{3}{2}\)
\(\Leftrightarrow2\Sigma xy^2+2\Sigma x^2+\Sigma xy\ge3\Sigma x+6\)( quy đồng khử mẫu )
\(\Leftrightarrow\Sigma\frac{x}{y}\ge\Sigma x\)( xyz = 1 ) ( luôn đúng )
\(\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa: \(a;b>0\)
Áp dụng BĐT AM-GM ta có:
\(A=\left(a+1\right)\left(1+\dfrac{1}{b}\right)+\left(b+1\right)\left(1+\dfrac{1}{a}\right)\)
\(=\dfrac{a}{b}+\dfrac{b}{a}+a+\dfrac{1}{a}+b+\dfrac{1}{b}+2\)
\(=\dfrac{a}{b}+\dfrac{b}{a}+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\dfrac{1}{2a}+\dfrac{1}{2b}+2\)
\(\ge2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}+2\sqrt{a\cdot\dfrac{1}{2a}}+2\sqrt{b\cdot\dfrac{1}{2b}}+2\sqrt{\dfrac{1}{2a}\cdot\dfrac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\dfrac{1}{\sqrt{ab}}\)\(\ge4+2\sqrt{2}+\dfrac{1}{\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu \("="\) xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)
\(2=\left|a-1\right|+\left|b-1\right|\ge\left|a-1+b-1\right|=\left|a+b-2\right|\)
Với \(a+b-2\ge0\Leftrightarrow a+b\ge2\) thì:
\(a+b-2\le2\Leftrightarrow a+b\le4\Rightarrow\left|a+b-1\right|\le\left|4-1\right|=3\)
Dấu "=" xảy ra \(\left\{{}\begin{matrix}2\le a+b\le4\\a+b=4\\\left(a-1\right)\left(b-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ge1,b\ge1\\a+b=4\end{matrix}\right.\)
Với \(a+b-2\le0\Leftrightarrow a+b\le2\) thì:
\(-a-b+2\le2\Leftrightarrow a+b\ge0\Rightarrow\left|a+b-1\right|\ge\left|0-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b\le2\\a+b=0\\\left(a-1\right)\left(b-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\le1,b\le1\\a+b=0\end{matrix}\right.\)
Vậy GTNN của \(\left|a+b-1\right|\) là 1 khi \(\left\{{}\begin{matrix}a+b=0\\a\le1,b\le1\end{matrix}\right.\)
GTLN của $\left|a+b-1\right|$ là 3 khi $\hept{\begin{matrix}a\ge 1,b\ge 1\\a+b=4\end{matrix}}$