K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu

18 tháng 11 2022

Để đây là hàm số bậc nhất và nghịch biến thì

\(\left\{{}\begin{matrix}m^2-4=0\\\left(n-5m\right)\left(2m+n\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(5m-n\right)\left(2m+n\right)>0\end{matrix}\right.\)

TH1: m=2

=>(10-n)(4+n)>0

=>(n-10)(n+4)<0

=>-4<n<10

TH2: m=-2

=>(-10-n)(4+n)>0

=>(n+10)(n+4)<0

=>-10<n<-4

NV
14 tháng 6 2020

Ủa còn m;n là số gì bạn?

Bất kì là BĐT này ko đúng

15 tháng 6 2020

Đây là đáp án ạ, nhưng em cần chứng minh bổ đề ạ =((

22 tháng 12 2018

@Akai Haruma

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Đặt cả biểu thức to là $P$

Với mọi số tự nhiên $n$, áp dụng định lý Fermat nhỏ:

\(n^7\equiv n\pmod 7\) \(\Leftrightarrow n^7-n\vdots 7(1)\)

\(n^7-n=n(n^6-1)=n(n-1)(n+1)(n^2+n+1)(n^2-n+1)\) có $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 6$

\(\Rightarrow n^7-n\vdots 6(2)\)

Từ \((1);(2)\Rightarrow n^7-n\vdots 42\) hay \(n^7\equiv n\pmod {42}\) (do 6 và 7 nguyên tố cùng nhau)

Áp dụng tính chất trên vào bài toán:

\([(27n+5)^7+10]^7\equiv (27n+5)^7+10\equiv 27n+5+10\pmod {42}(*)\)

\([(10n+27)^7+5]^7\equiv (10n+27)^7+5\equiv 10n+27+5\pmod {42}(**)\)

\([(5n+10)^7+27]^7\equiv (5n+10)^7+27\equiv 5n+10+27\pmod {42}(***)\)

Cộng theo vế:
\(\Rightarrow P\equiv 27n+5+10+10n+27+5+5n+10+27\)

\(\equiv 42n+84\equiv 0\pmod {42}\)

Hay $P\vdots 42$

Ta có đpcm.

27 tháng 5 2019

Bạn thi chuyên KHTN à?