Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Vì tam giác ABC vuông cân tại A, cạnh BC = a√6 nên AB = AC = a√3.
Chọn hệ trục tọa độ Oxyz sao cho A (0;0;0), B (0; a√3; 0), C (a√3;0;0), A' (0;0;z) (z > 0).
VTPT của (BCC'B') là:
VTPT của mặt phẳng (BA'C) là:
Vì góc giữa mặt phẳng và mặt phẳng bằng nên:
Vậy thể tích của khối lăng trụ ABC.A'B'C' là:
Gọi H là trung điểm BC, H' là trung điểm B'C'
\(\left\{{}\begin{matrix}AH\perp BC\\AH\perp HH'\left(HH'\cap BC=\left\{H\right\}\right)\end{matrix}\right.\Rightarrow AH\perp\left(BCC'B'\right)\)
\(\widehat{\left(ABC\right),\left(AB'C'\right)=60^0\Rightarrow\widehat{H'AH}=60^0}\)
\(AH=\dfrac{a}{2}\Rightarrow HH'=AH\tan60^0=\dfrac{a\sqrt{3}}{2}\Rightarrow V=S_{ABC}.HH'=\dfrac{1}{2}.\sqrt{3}a.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{2}=\dfrac{3a^3}{8}\)
Chọn đáp án D.
Ta có A'A = A'B = A'C nên hình chiếu của A' là tâm đường tròn ngoại tiếp tam giác ABC.
Do tam giác ABC đều nên trọng tâm G là tâm đường tròn ngoại tiếp tam giác ABC.
AG là hình chiếu của A'A lên mặt phẳng (ABC)
Góc giữa A'A với mặt phẳng (ABC) là: A ' A G ^
Gọi H là trung điểm BC.
Ta có:
Xét tam giác A'AG vuông tại G:
Diện tích tam giác đều ABC là:
Thể tích khối lăng trụ ABC.A'B'C' là:
Phương pháp:
Xác định góc 30 ° (góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h
Cách giải:
Ta có:
Chọn A.