K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

Lời giải

Các tỉ số lượng giác của góc β là:

Giải bài tập Toán 9 | Giải Toán lớp 9 Tra Loi Cau Hoi Toan 9 Tap 1 Bai 2 Trang 73

7 tháng 8 2020

mik nhầm nhé

AB=2cm

=>S ABC=căn 3(cm2)

=>h=12(cm)

3 tháng 10 2021

AD định lí PYtago  

=> AB ^2 + AC ^2 = BC ^2 

3 ^2 + 4^2 = BC^2

=> BC ^2 = 25 

=> BC = 5

Ta có

SinB = AB/BC

SinB = 3 /5

=> gB ∼ 37 độ

Sin C = AC /BC 

sin C = 4/5 

=> gC = 53 độ

 

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)

=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)

=>BC=10(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC=IB

IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC}\)

\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥DE tại K

=>\(\hat{AKE}=90^0\)

T
24 tháng 9

Cảm ơn thầy Thịnh ạ

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)

=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)

=>BC=10(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC=IB

IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC}\)

\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥DE tại K

=>\(\hat{AKE}=90^0\)

T
24 tháng 9

Em cần gấp quá nhờ thầy cô giải giúp em ạ


23 tháng 8 2020
Câu a)Nhãncâu bNhãn