K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')

Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)

Ta có  

Lại có 

 Ta luôn có 

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có  .

Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật 

Từ: 

2 tháng 11 2019

Đáp án D.

Gọi M là trung điểm BC, dựng 

∆ AA'G vuông tại G, GH là đường cao => A'G =  1 3

Vậy 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Hỏi đáp Toán

22 tháng 3 2016

A' B' C' A B C M N c a a b a căn 2 a căn 3

23 tháng 3 2016

Đặt \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},\overrightarrow{AA'}=\overrightarrow{c}\)

với \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\)

và \(\left|\overrightarrow{a}\right|=a,\overrightarrow{\left|b\right|}=a\sqrt{2},\left|\overrightarrow{c}\right|=a\sqrt{3}\)

khi đó 

\(\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{c,}\overrightarrow{BC}=-\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)

Giả sử đường vuông góc chung cắt \(\overrightarrow{AB}\) tại M và cắt \(\overrightarrow{BC'}\) tại N và \(\overrightarrow{AM}=x.\overrightarrow{AB'}=x.\overrightarrow{a}+x.\overrightarrow{c},\overrightarrow{BN}=y.\overrightarrow{BC'}=-y.\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Suy ra \(\overrightarrow{AN}=\left(1-y\right)\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Và do đó

\(\overrightarrow{MN}=\left(1-x-y\right)\overrightarrow{a}+y.\overrightarrow{b}+\left(y-x\right)\overrightarrow{c}\)

Ta có :

\(MN\perp AB',BC'\Leftrightarrow\begin{cases}\overrightarrow{MN}.\overrightarrow{AB}=0\\\overrightarrow{MN}.\overrightarrow{BC'}=0\end{cases}\)

                            \(\Leftrightarrow\begin{cases}-4x+2y+1=0\\-2x+6y-1=0\end{cases}\)

Giải hệ ta thu được \(x=\frac{2}{5},y=\frac{3}{10}\)

Từ đó :

\(MN^2=\left[\left(1-x-y\right)^2+2y^2+3\left(y-x\right)^2\right].a^2=\frac{39^a}{100}\)

Suy ra \(d\left(AB';BC'\right)=\frac{a\sqrt{39}}{10}\)

3 tháng 7 2016

tính thể tích sao vậy

NV
15 tháng 3 2022

Gọi D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AD\perp BC\\AD=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

Gọi E là trung điểm BD \(\Rightarrow\) HE là đường trung bình tam giác ABD

\(\Rightarrow\left\{{}\begin{matrix}HE||AD\Rightarrow HE\perp BC\\HE=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{4}\end{matrix}\right.\)

Mà \(B'H\perp\left(ABC\right)\Rightarrow B'H\perp BC\Rightarrow BC\perp\left(B'HE\right)\)

\(\Rightarrow\widehat{B'EH}\) là góc giữa (BCC'B') và đáy

\(\Rightarrow\widehat{B'HE}=60^0\)

\(\Rightarrow B'H=HE.tan60^0=\dfrac{3a}{4}\)

\(AA'||BB'\Rightarrow AA'||\left(BCC'B'\right)\Rightarrow d\left(AA';BC\right)=d\left(AA';\left(BCC'B'\right)\right)=d\left(A;\left(BCC'B'\right)\right)\)

Mà H là trung điểm AB \(\Rightarrow AB=2HB\Rightarrow d\left(A;\left(BCC'B'\right)\right)=2d\left(H;\left(BCC'B'\right)\right)\)

Từ H kẻ \(HK\perp B'E\)

Do \(BC\perp\left(B'HE\right)\Rightarrow\left(BCC'B'\right)\perp\left(B'HE\right)\)

 Mà B'E là giao tuyến (B'HE) và (BCC'B')

\(\Rightarrow HK\perp\left(BCC'B'\right)\Rightarrow HK=d\left(H;\left(BCC'B'\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{HK^2}=\dfrac{1}{B'H^2}+\dfrac{1}{HE^2}\Rightarrow HK=\dfrac{B'H.HE}{\sqrt{B'H^2+HE^2}}=\dfrac{3a}{8}\)

\(\Rightarrow d\left(AA';BC\right)=2HK=\dfrac{3a}{4}\)

NV
15 tháng 3 2022

undefined