Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Cho hai mặt phẳng (α) và (β) cắt nhau, ta xác định góc giữa (α) và (β) như sau:
- Tìm giao tuyến ∆ của hai mặt phẳng (α) và (β).
- Tìm trong mỗi mặt phẳng (α), (β) một đường thẳng 𝑎, cùng cùng vuông góc với ∆ và cùng cắt ∆ tại điểm .
- Xác định góc giữa 𝑎 và 𝑏.
Cách giải: Gọi H là trung điểm của A’B’ => AH ⊥ (A’B’C’)
Kẻ HJ, A'K' ⊥ B'C', (J, K' ∈ B'C'), AK ⊥ BC, (K ∈ BC)
HJ//A'K', A'K'//AK => HJ//AK => H,J,A,K đồng phẳng
Vì
Ta có:
=> ((BCC'B');(A'B'C')) = (KJ;HJ)
A ' B ' K ' ^ = 180 0 - 120 0 = 60 0
=> A'K' = A'B' . sin 60 0
Xét ∆B’HC’ : H'C =
∆AHC’ vuông tại H => AH = HC.tanC’ = HC.tan(AC’;(A’B’C’)) (vì AH ⊥ (A’B’C’))
Xét hình thang vuông AKJH:
Kẻ
Vì AK//HJ
Đáp án B.
Phương pháp:
Sử dụng công thức Côsin:
a 2 = b 2 + c 2 − 2 b c cos A
Cách giải:
Dựng hình bình hành ABCD (tâm I). Khi đó, A’B’CD là hình bình hành (do A ' B ' → = A B → = D C → )
⇒ A ' D / / B ' C ⇒ A ' B ; B ' C = A ' B ; A ' D
Tam giác ABC vuông tại A
⇒ B C = A B 2 + A C 2 = a 2 + a 3 2 = 2 a
H là trung điểm của BC
⇒ H B = H C = a
Tam giác A’BH vuông tại H
⇒ A ' B = A ' H 2 + H B 2 = a 3 2 + a 2 = 2 a
Tam giác ABC vuông tại A
⇒ cos A B C = A B B C = a 2 a = 1 2
ABCD là hình bình hành
⇒ A B / / C D ⇒ D C B = 180 0 − A B C ⇒ cos D C B = − c osABC=- 1 2
Tam giác BCD:
B D = B C 2 + C D 2 − 2 B C . C D . cos D C B = 2 a 2 + a 2 − 2.2 a . a . − 1 2 = a 7
Tam giác CDH:
D H = C H 2 + C D 2 − 2 C H . C D . cos D C B = a 2 + a 2 − 2 a . a . − 1 2 = a 3
Tam giác A’DH vuông tại H:
A ' D = A ' H 2 + H D 2 = a 3 2 + a 3 2 = a 6
Tam giác A’BH:
cosBA ' D = A ' D 2 + A ' B 2 − B D 2 2 A ' D . A ' B = a 6 2 + 2 a 2 − 7 a 2 2. a 6 .2 a = 3 4 6 = 6 8 .
Đáp án A
Khoảng cách giữa hai mặt đáy là h = AH = A’H.tan A A ' H ^ = a 3 2 . tan 30 0 = a 2