K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

(a)đi pua cc" và song song với 2 đt AH,CB'

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có \(\left( {MNP} \right) \cap \left( {ABC} \right) = MN,\left( {ABC} \right) \cap \left( {ACC'A'} \right) = AC,AC//MN\) (do MN là đường trung bình của tam giác ABC) suy ra giao tuyến của (MNP) và (ACC'A') song song với MN và AC.

Qua P kẻ đường thẳng song song với AC cắt CC' tại H.

PH là giao tuyến của (MNP) và (ACC'A').

Nối H với N cắt B'C tại K.

Vậy K là giao điểm của (MNP) và B'C.

b) Gọi giao điểm BC' và B'C là O.

Ta có ACC'A' là hình bình hành P là trung điểm AA', PH //AC suy ra H là trung điểm CC'.

Xét tam giác CC'B ta có: HN là đường trung bình suy ra CK = OK.

Mà OC = OB' suy ra \(\frac{{KB'}}{{KC}} = 3\).

26 tháng 5 2017

Hỏi đáp Toán

19 tháng 3 2016

Ta có \(\frac{MA}{MB}=k\Leftrightarrow MA^2=k^2MB^2\Leftrightarrow\overrightarrow{MA^2}=k^2\overrightarrow{MB^2}\)

                       \(\Leftrightarrow\left(\overrightarrow{MA}-k\overrightarrow{MB}\right)\left(\overrightarrow{MA}+k\overrightarrow{MB}\right)=0\)

Gọi P, Q là các điểm thỏa mãn \(\overrightarrow{PA}.\overrightarrow{MQ}=0\Leftrightarrow MP\perp MQ\)

Từ đó suy ra tập hợp tất cả các điểm M cần tìm là đường tròn đường kính PQ

* Với k=1,quỹ tích cần tìm là đường trung trực (tương ứng mặt phẳng trung trực, với bài toàn trong không gian) của đoạn thẳng AB

* Đường tròn tìm được trong bài trên được gọi là đường tròn Apolonius

* Với bài toàn ở trong không gian, tương tự như vậy, ta cũng thu được quỹ tích là mặt cầu đường kính PQ, và mặt cầu đó cũng được gọi là mặt cầu Apolpnius

19 tháng 3 2016

M Q I A P B

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song