Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn:
Dễ dàng nhận ra A thuộc B'G (vì AB' là đường chéo của hbh mặt bên nên là 1 trung tuyến)
Gọi M, M' lần lượt là trung điểm BC và B'C'
=> (GOB') là (AMB')
(CA'O') là (CA'M')
Có B'M'CM là hình bình hành
A'M'MA cũng là hbh
Suy ra 2 cặp đường thẳng song song và cắt nhau => đpcm
Chắc đề đúng là tính \(d\left(A;\left(BCC'B'\right)\right)\)
Gọi E là trung điểm BC \(\Rightarrow AE\perp BC\) (trong tam giác đều trung tuyến đồng thời là đường cao)
\(\Rightarrow AE\perp\left(BCC'B'\right)\)
\(\Rightarrow AE=d\left(A;\left(BCC'B'\right)\right)\)
Ta có: \(AE=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)
\(\Rightarrow d\left(A;\left(BCC'B'\right)\right)=\dfrac{a\sqrt{3}}{2}\)
Gọi M là trung điểm BC \(\Rightarrow MG\) là đường trung bình tam giác BCB'
\(\Rightarrow MG||BB'\Rightarrow MG\perp\left(ABC\right)\)
\(\Rightarrow\widehat{GAM}\) là góc giữa AG và (ABC)
\(MG=\dfrac{1}{2}BB'=\dfrac{a}{2}\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)
\(tan\widehat{GAM}=\dfrac{MG}{AM}=\dfrac{\sqrt{3}}{3}\)
Sao G và G' chẳng liên quan gì đến bài toán vậy ta?
Do tam giác ABC vuông tại B và M là trung điểm AC\(\Rightarrow M\) là tâm đường tròn ngoại tiếp tam giác ABC
Tương tự, N là tâm đường tròn ngoại tiếp tam giác A'B'C'
Mà \(MN//AA'\Rightarrow\left\{{}\begin{matrix}MN\perp\left(ABC\right)\\MN\perp\left(A'B'C'\right)\end{matrix}\right.\)
\(\Rightarrow\) với điểm P bất kì thuộc MN thì \(\left\{{}\begin{matrix}PA=PB=PC\\PA'=PB'=PC'\end{matrix}\right.\)
Gọi Q là trung điểm MN \(\Rightarrow QA=QA'\)
\(\Rightarrow QA=QB=QC=QA'=QB'=QC'\)
Vậy trung điểm của MN chính là điểm cách đều cách đỉnh của lăng trụ