K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2

a) Có \(A'H=\dfrac{a\sqrt{3}}{2}\). Lại có \(AH\perp\left(A'B'C'\right)\) tại H nên \(\widehat{AA',\left(A'B'C'\right)}=\widehat{AA'H}=60^o\)

\(\Rightarrow AH=A'H.\tan60^o\) \(=\dfrac{a\sqrt{3}}{2}.\sqrt{3}=\dfrac{3a}{2}\)

b) Kẻ \(HK\perp A'B'\) tại K, \(HL\perp AK\) tại L.

 Ta thấy \(A'B'\perp KH\) và \(A'B'\perp AH\) nên \(A'B'\perp\left(AHK\right)\) 

 \(\Rightarrow A'B'\perp HL\)

Mà \(HL\perp AK\) nên \(HL\perp\left(AA'B\right)\) \(\Rightarrow\left(AHK\right)\perp\left(AA'B\right)\)

Hơn nữa có \(AH\perp\left(A'B'C'\right)\) nên \(\left(AHK\right)\perp\left(A'B'C'\right)\)

Do đó góc nhị diện \(\left[A,A'B',C'\right]\) chính là \(\widehat{AKH}\)

Ta có \(\dfrac{1}{HK^2}=\dfrac{1}{HA'^2}+\dfrac{1}{HB'^2}\) \(=\dfrac{1}{\left(\dfrac{a\sqrt{3}}{2}\right)^2}+\dfrac{1}{\left(\dfrac{a}{2}\right)^2}\) \(=\dfrac{16}{3a^2}\)

\(\Rightarrow HK=\dfrac{a\sqrt{3}}{4}\)

\(\Rightarrow\widehat{AKH}=\tan^{-1}\left(\dfrac{AH}{KH}\right)\) \(=\tan^{-1}\left(\dfrac{\dfrac{3a}{2}}{\dfrac{a\sqrt{3}}{4}}\right)\) \(=\tan^{-1}\left(2\sqrt{3}\right)\) \(\approx73,9^o\)

Vậy ...

c) Gọi M là trung điểm BC. Khi đó dễ thấy tứ giác AMHA' là hình bình hành.  Kẻ \(AX\perp HM\) tại X.

Ta có \(BC\perp AM\) và \(BC\perp AH\) nên \(BC\perp\left(AMH\right)\)

\(\Rightarrow BC\perp AX\). Lại có \(AX\perp HM\) nên \(AX\perp\left(BB'C'\right)\) 

\(\Rightarrow\left(AA'HM\right)\perp\left(BB'C'\right)\)

Hơn nữa vì \(AH\perp\left(A'B'C'\right)\) nên \(\left(AA'HM\right)\perp\left(A'B'C'\right)\)

Do đó góc nhị diện \(\left[B,B'C',A'\right]\) chính là \(\widehat{A'HM}=90^o+\widehat{AHM}=90^o+\widehat{A'AH}=90^o+30^o=120^o\)

d) \(S_đ=\dfrac{a^2\sqrt{3}}{4}\)

\(\Rightarrow V_{lt}=S_đ.h\) \(=\dfrac{a^2\sqrt{3}}{4}.\dfrac{3a}{2}\) \(=\dfrac{3a^2\sqrt{3}}{8}\) (đvtt)

 

NV
27 tháng 4 2021

\(AH\perp\left(ABCD\right)\Rightarrow\widehat{A'AH}\) là góc giữa AA' và (ABCD) \(\Rightarrow\widehat{A'AH}=60^0\)

\(\Rightarrow AA'=\dfrac{AH}{cos60^0}=a\)

a. Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABCD\right)\Rightarrow A'H\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABB'A'\right)\)

Mà \(AD\in\left(ADD'A'\right)\Rightarrow\left(ADD'A'\right)\perp\left(ABB'A'\right)\)

b. Kiểm tra lại đề câu này

Hai mặt phẳng (ABCD) và (A'B'C'D') hiển nhiên song song (theo tính chất lăng trụ) nên góc giữa chúng bằng 0. Do đó thấy ngay \(tan\left(\left(ABCD\right);\left(A'B'C'D'\right)\right)=0\)

Có lẽ không ai bắt tính điều này cả.

c.

\(\left(ABCD\right)||\left(A'B'C'D'\right)\Rightarrow d\left(A;\left(A'B'C'D'\right)\right)=d\left(A';\left(ABCD\right)\right)=A'H=a\)

NV
19 tháng 3 2021

Gọi M là trung điểm BC \(\Rightarrow MG\) là đường trung bình tam giác BCB'

\(\Rightarrow MG||BB'\Rightarrow MG\perp\left(ABC\right)\)

\(\Rightarrow\widehat{GAM}\) là góc giữa AG và (ABC)

\(MG=\dfrac{1}{2}BB'=\dfrac{a}{2}\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

\(tan\widehat{GAM}=\dfrac{MG}{AM}=\dfrac{\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

M là điểm nào thế bạn?

29 tháng 1 2021

Akai Haruma

M là trung điểm AC ạ

8 tháng 6 2020

Đề là AH vuông góc với đáy đấy ạ

8 tháng 6 2020

Đề là A'H đấy ạ

NV
5 tháng 4 2022

a.

\(\left\{{}\begin{matrix}BB'\perp\left(ABC\right)\Rightarrow BB'\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ABB'A'\right)\)

\(\Rightarrow BC=d\left(C;\left(A'AB\right)\right)\)

\(S_{A'AB}=\dfrac{1}{2}S_{ABB'A'}=\dfrac{3a^2}{2}\)

\(\Rightarrow V_{C.A'AB}=\dfrac{1}{3}BC.S_{A'AB}=\dfrac{1}{3}.2a.\dfrac{3a^2}{2}=a^3\)

b.

Theo cmt, \(BC\perp\left(ABB'A'\right)\Rightarrow BC\perp AN\)

Mà \(\left\{{}\begin{matrix}A'C\perp\left(P\right)\\AN\in\left(P\right)\end{matrix}\right.\) \(\Rightarrow AN\perp A'C\)

\(\Rightarrow AN\perp\left(A'BC\right)\Rightarrow AN\perp A'B\)

c.

Ta có: \(AA'||BB'\Rightarrow d\left(B;AA'\right)=d\left(N;AA'\right)\)

\(\Rightarrow S_{A'AN}=S_{A'AB}\)

Lại có: \(CC'||BB'\Rightarrow CC'||\left(ABB'A'\right)\)

\(\Rightarrow d\left(C';\left(ABB'A'\right)\right)=d\left(M;\left(ABB'A'\right)\right)\)

\(\Rightarrow V_{A'AMN}=V_{CA'AB}=a^3\)

NV
5 tháng 4 2022

undefined

NV
4 tháng 5 2021

Kẻ \(CH\perp AB\Rightarrow AB\perp\left(CC'H\right)\)

\(\Rightarrow\widehat{CHC'}\) là góc giữa (C'AB) và (ABC) \(\Rightarrow\widehat{CHC'}=30^0\)

\(\Rightarrow CH=C'H.cos30^0=\dfrac{C'H.\sqrt{3}}{2}\)

\(S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{\sqrt{3}}{2}.\left(\dfrac{1}{2}C'H.AB\right)=\dfrac{\sqrt{3}}{2}S_{C'AB}=6\sqrt{3}\)