Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có hai vec tơ a→, b→ bất kì như hình vẽ.
Vẽ hình bình hành ABCD sao cho
Ta có:
Do đó
a) ⇔ AC = AB + BC ⇔ B nằm giữa A và C
⇔ cùng hướng hay a→ và b→ cùng hướng.
b) ⇔ AC = BD
⇔ ABCD là hình chữ nhật
⇔ AB ⊥ CD hay
Câu 5:
D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)
Ta có a → . b → = a → . b → . c o s a → , b → .
Mà theo giả thiết a → . b → = − a → . b →
Suy ra cos a → , b → = − 1 ⇒ a → , b → = 180 0 .
Chọn A.
Có \(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\).
Vì vậy:
\(\overrightarrow{a}.\overrightarrow{b}< 0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)< 0\) hay \(90^o< \left(\overrightarrow{a},\overrightarrow{b}\right)\le180^o\).
\(\overrightarrow{a}.\overrightarrow{b}>0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)>0\) hay \(0^o\le\left(\overrightarrow{a},\overrightarrow{b}\right)< 90^o\).
\(\overrightarrow{a}.\overrightarrow{b}=0\) khi \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=0\) hay \(\left(\overrightarrow{a},\overrightarrow{b}\right)=90^o\).
) Ta có = +
Nếu coi hình bình hành ABCd có = = và = = thì là độ dài đường chéo AC và = AB; = BC.
Ta lại có: AC = AB + BC
Đẳng thức xảy ra khi điểm B nằm giữa hai điểm A, C.
Vậy = + khi hai vectơ , cùng hướng.
b) Tương tự, là độ dài đường chéo AC
là độ dài đường chéo BD
= => AC = BD.
Hình bình hành ABCD có hai đường chéo bằng nhau nên nó là hình chữ nhật, ta có AD AB hay