K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

\(\frac{4^x}{2^{x+y}}=8\)

\(\frac{2^{2x}}{2^{x+y}}=2^3\)

\(2x-x-y=3\)

\(x-y=3\)

\(2x-2y=6\)

\(\frac{9^{x+y}}{3^{5y}}=243\)

\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)

\(2x+2y-5y=5\)

\(2x-3y=5\)

\(2x-2y=6\)

\(\left(2x-3y\right)-\left(2x-2y\right)=5-6\)

\(-y=-1\)

\(y=1\)

x = 4

x . y = 4

24 tháng 3 2018

Bài này làm cũng dài nên nhường bạn khác

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

22 tháng 12 2017

Nhầm, là (18,6); (8,7); (3,9); (2,10); (0,15)

22 tháng 12 2017

xy-5x+2y=30  <=> 2y-30=5x-xy

<=> 2y-30=x(5-y)  => \(x=\frac{2y-30}{5-y}=-\frac{2y-30}{y-5}=-\frac{2y-10-20}{y-5}=-\frac{2\left(y-5\right)-20}{y-5}\)

=> \(x=-2+\frac{20}{y-5}\)

9 tháng 2 2021

biến đổi: \(P=1.\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)=\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\)

\(P=\left(\dfrac{y}{16x}+\dfrac{x}{4y}\right)+\left(\dfrac{z}{16x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{4y}+\dfrac{y}{z}\right)+\dfrac{21}{16}\)

Áp dụng bất đẳng thức cosi cho từng ngoặc ta được: 

\(\dfrac{y}{16x}+\dfrac{x}{4y}\ge2\sqrt{\dfrac{y}{16x}.\dfrac{x}{4y}}=\dfrac{1}{4}\)

hoàn toàn tương tự: \(\dfrac{z}{16x}+\dfrac{x}{z}\ge\dfrac{1}{2}\)

\(\dfrac{z}{4y}+\dfrac{y}{z}\ge1\)

=> P>=49/16

6 tháng 12 2016

xy-5x+2y=30

\(\Rightarrow xy-5x+2y-10=20\)

\(\Rightarrow\left(xy-5x\right)+\left(2y-10\right)=20\)

\(\Rightarrow x\left(y-5\right)+2\left(y-5\right)=20\)

\(\Rightarrow\left(x+2\right)\left(y-5\right)=20\)

Xét Ư(20) ra...

 

6 tháng 12 2016

chị An đâu help a Minh