Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự túc, vẽ khó quá.
a) ACB^ = ECN^ (đđ)
Mà ACB^ = ABC^ (do \(\Delta\) ABC cân)
=> ABC^ = ECN^
Xét \(\Delta\)BDM và \(\Delta\)CEN :
BDM^ = CEN^ = 90o
BD = CE
ABC^ = CEN^
=> \(\Delta\)BDM = \(\Delta\)CEN (cạnh góc vuông_ góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b) MD _|_ BC; NE_|_ BC => MD // NE
=> DMI^ = ENI^ (sole trong)
Xét \(\Delta\)DMI và \(\Delta\)ENI:
MDI^ = NEI^ = 90o
MD = EN (cmt)
DMI^ = ENI (cmt)
=> \(\Delta\)DMI và \(\Delta\)ENI (cạnh góc vuông_góc nhọn)
=> IM = IN (1)
Vì I là giao điểm của MN và BC nên I nằm trên MN (2)
Từ (1) và (2) => I là trung điểm của MN
c) Xét \(\Delta\)ABO và \(\Delta\)ACO:
AO chung
BAO^ = CAO^
AB = AC
=> \(\Delta\)ABO = \(\Delta\)ACO (c.g.c)
d) ko bt (cần thời gian suy nghĩ, và có thể bí luôn)
Mình khỏi vẽ hình nha
a. Chứng minh tam AMN cân tại A.
Ta có:
AB=AC (tam giác ABC cân tại A)
BM=NC (gt)
Trừ theo vế, ta được: AB-BM=AC-NC hay AM=AN
Suy ra: tam giác AMN cân tại A
b. Chứng minh MN//BC
Ta có:
Tam giác AMN cân tại A (cmt), nên: \(\widehat{AMN=\frac{180-\widehat{A}}{2}}\)
Tam giác ABC cân tại A (cmt), nên: \(\widehat{ABC=\frac{180-\widehat{A}}{2}}\)
Suy ra: \(\widehat{AMN=\widehat{ABC}}\)
Mà hai góc này ở vị trí đồng vị
Vậy MN//BC
c. Chứng minh AI là phân giác của góc A
Xét tam giác AIB và tam giác AIC, có:
AB=AC (tam giác ABC cân tại A)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
IB =IC ( gt)
Do đó: tam giác AIB=tam giác AIC (cgc)
Nên: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
Vậy AI là phân giác của góc A
d. Chứng minh OM=ON
Xét tam giác AOM và tam giác AON, có:
AM=AN (cmt)
\(\widehat{BAI}=\widehat{CAI}\)(cmt)
AO chung
Do đó: tam giác AOM = tam giác AON (cgc)
Nên: OM=ON
d. Chứng minh A,O,I thẳng hàng
Vì AI là phân giác của góc A (cmt)
Tương tự AO là phân giác của góc A
Vậy ba điểm A,O,I thẳng hàng
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
a) Tg KMN cân tại K(gt)
=> KM=KN
Mà : KE=KF(gt)
=> EM=FN
Xét tg MEN và NFM, có :
EM=FN(cmt)
\(\widehat{KMN}=\widehat{KNM}\)(tg KMN cân tại K)
MN-cạnh chung
=> Tg MEN=NFM(c.g.c)
=> MF=NE(đccm)
b) Xét tg KOM và KON có:
KM=KN(tg KMN cân tại K)
KO-cạnh chung
OM=ON(gt)
=> Tg KOM=KON(c.c.c)
=> \(\widehat{KOM}=\widehat{KON}\)
Mà : \(\widehat{KOM}+\widehat{KON}=180^o\)(kề bù)
\(\Rightarrow\widehat{KOM}=\widehat{KON}=90^o\)
\(\Rightarrow KO\perp MN\left(đccm\right)\)
c) Sửa lại cái đề, gọi giao điểm của KO và FE là I nhé.
Do tg KOM=KON(cmt)
\(\Rightarrow\widehat{MKO}=\widehat{NKO}\)
Xét tg KIM và KIN có :
\(\widehat{MKO}=\widehat{NKO}\left(cmt\right)\)
KI-cạnh chung
KM=KN(tg KMN cân K)
=> Tg KIM=KIN(c.g.c)
=> IM=IN
=> Tg IMN cân tại I (đccm)
d) Xét tam giác KMN vuông K có : \(\widehat{KMN}=\widehat{KNM}=\frac{180^o-\widehat{K}}{2}\)(1)
Xét tam giác KEF ( do KE=KF) có : \(\widehat{KEF}=\widehat{KFE}=\frac{180^o-\widehat{K}}{2}\)(2)
Từ 1 và 2\(\Rightarrow\widehat{KMN}=\widehat{KEF}\)
Mà chúng ở vị trí đồng vị
=> EF//MN (đccm)
#H