Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp:
Tính chiều cao hình trụ và tính thể tích theo công thức
Giải phương trình:
Phương trình (1) có tối đa 1 nghiệm. Mà f π = 0 ⇒ x = π là nghiệm duy nhất của (1).
Thể tích khối tròn xoay tạo thành là:
Mà
Chọn A.
Đáp án A.
Gọi I là tâm của đường tròn dáy của chỏm cầu. M là 1 đỉnh của hình hộp thuộc đường tròn I ; R 2 .
Ta có:
I M = R 2 ; O M = R ⇒ O I = R 2 − R 2 4 = 3 R 2 .
Do đó khối hộp có chiều cao là
h = 3 R = 10 3 .
Thể tích của chỏm cầu bị cắt:
V = ∫ h 2 R π R 2 − x 2 d x = ∫ 5 3 10 π 100 − x 2 d x ≃ 53 , 87.
Thể tích của khối hộp chữ nhật:
V = S d . h = R 2 2 . 3 . R = 3 2 R 3 ≃ 866 , 025.
Thể tích khối cầu ban đầu:
V = 4 3 π R 3 ≃ 4188 , 79.
Do đó thể tích cần tính:
V ≃ 4188 , 79 − 866 , 025 − 2.53 , 87 ≃ 3215 , 023.
Đáp án D
Phương pháp: Thể tích của khối trụ có chiều cao h và bán kính đáy r là V = π r 2 h
Cách giải: V = π r 2 h = π 2 2 .2 = 8 π
Đáp án D
Cạnh hình vuông bằng 2 a ⇒ h T = 2 a
Bán kính đáy R = a 3 2 + 2 a 2 2 = 2 a
Suy ra V = π R 2 h = 8 π a 3
Đáp án D.
Mặt phẳng (P) cắt đường tròn đáy theo dây cung có độ dài bằng 2 r 2 − r 2 2 2 = r 2 .
Độ dài r 2 chính là độ dài cạnh của hình vuông nội tiếp đường tròn bán kính r.
Xét hình hộp chữ nhật có đáy là hình vuông nội tiếp hình trụ. Khi đó khối hộp chữ nhật đó chia khối trụ thành 5 phần gồm một phần là khối hộp và bốn phần bằng nhau ở ngoài khối hộp nhưng ở trong khối trụ.
Thể tích khối trụ là V = π r 2 h . Thể tích khối hộp chữ nhật nói trên là V 0 = r 2 2 h = 2 r 2 h .
Suy ra V 2 = 1 4 V − V 0 = π − 2 4 r 2 h và V 1 = V − V 2 = 3 π + 2 4 r 2 h .
Do đó V 1 V 2 = 3 π + 2 π − 2 .