K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

2 tháng 4 2016

A B H C C' A' B'

Gọi H là trung điểm của cạnh BC. Suy ra :

\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)

Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)

Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)

Trong tam giác vuông A'B'H ta có :

\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'

Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)

Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)

22 tháng 9 2016

tại sao tam giác A'B'H lại vuông tại A' ạ??

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó 2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\) 3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60....
Đọc tiếp

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó

2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\)

3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60. Góc giữa A'B và (ABC) bằng 30. Tính thể tích khối lăng trụ đó

4,hình chóp có đường cao bằng 12cm, đáy là tam giác ddeuf cạnh bằng 4cm. Tính thể tích

5,Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mp (ABCD) là điểm H trên cạnh AD sao cho AH= 2HD, (SBC) hợp với đáy một góc 60. Tính thể tích V của khối chóp S.ABCD A. \(\dfrac{a^3\sqrt{3}}{9}\) B, \(\dfrac{2a^3\sqrt{3}}{3}\) C, \(a^3\sqrt{3}\) D, \(\dfrac{a^3\sqrt{3}}{3}\)

0
23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

8 tháng 1 2022

cho năm năm

8 tháng 1 2022

Gọi H chân đường kẻ từ A của lăng trụ

Khi đó A'H là là hình chiếu của AA' trên mp

Xét tam giác AA'H vuông tại H có : \(SinA'=\frac{AH}{AA'}\)

\(AH=AA'.SinA'=AA'.Sin60^o=\frac{b\sqrt{3}}{2}\)

Do tam giác A'B'C' là tam giác đều nên chiều cao của tam giác : \(\frac{a\sqrt{3}}{2}\)

Thể tích ABC.A'B'C' : V = \(\frac{1}{3}\). AH . \(S_{A'B'C'}=\frac{3}{8}\)\(a^2b\)

Đáp án đó

25 tháng 6 2016

không biết vẽ hình hơ 

nhưng biết cách làm 

 

xét tam giác AA'B'  vuông tại A

AA'= căn (  (a căn 3)- a2)=a*(3a2+1)

 vậy  V = a*(3a2 +1) *  (1/2 )*( (căn 3 *a)/2) *a ( chiều cao * diện tích tam gaic1 abc )

b) thua 

2 tháng 4 2016

A B C B' C' A' E M

Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B

Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)

Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)

Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)

Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :

\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)

\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)

Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C