K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Chọn D.

Do tam giác A'AB vuông tại A nên theo pytago ta có

Lại có tam giác ABC vuông cân tại B nên 

Thể tích khối lăng trụ đã cho

8 tháng 4 2018

Chọn A.

Do tam giác ABC đều có cạnh bằng a 3  nên 

S A B C = a 3 2 . 3 4 = 3 a 2 3 4

Tam giác A'BC vuông tại A nên:

A ' B 2 = A A ' 2 + A B 2 ⇒ A A ' = A ' B 2 - A B 2 = 3 a 2 - a 3 2 = a 6

Vậy 

V A B C . A ' B ' C ' = A A ' . S A B C = a 6 . 3 a 2 3 4 = 9 2 a 3 4

30 tháng 3 2016

Khối đa diện

31 tháng 3 2016

A B C A' B' C' N M K

\(AA'\perp\left(ABC\right)\Rightarrow\widehat{A'BA}\) là góc giữa A'B với đáy

Suy ra : \(\widehat{A'BA}=60^o\Rightarrow AA'=AB.\tan\widehat{A'BA}=a\sqrt{3}\)

Do đó \(V_{ABC.A'B'C'}=AA'.S_{\Delta ABC}=\frac{3a^2}{4}\)

Gọi  K là trung điểm cạnh BC, suy ra Tam giác MNK vuông tại K, có :

\(MK=\frac{AB}{2}=\frac{a}{2};NK=AA'=a\sqrt{3}\)

Do đó : \(MN=\sqrt{MK^2+NK^2}=\frac{a\sqrt{13}}{2}\)

31 tháng 8 2017

Chọn đáp án D.

Ta có A'A = A'B = A'C nên hình chiếu của A' là tâm đường tròn ngoại tiếp tam giác ABC.

Do tam giác ABC đều nên trọng tâm G là tâm đường tròn ngoại tiếp tam giác ABC.

AG là hình chiếu của A'A lên mặt phẳng (ABC)

Góc giữa A'A  với mặt phẳng (ABC) là:  A ' A G ^

Gọi H là trung điểm BC.

Ta có: 

 

Xét tam giác A'AG vuông tại G:

Diện tích tam giác đều ABC là:

Thể tích khối lăng trụ ABC.A'B'C' là: 

7 tháng 10 2018

Chọn D

29 tháng 3 2018

Đáp án là D

Đáy là tam giác đều cạnh bằng 2a . Diện tích đáy là

Đường thẳng A'B tạo với đáy góc  60 0 => BA'B' =  60 0  .

Xét tam giác BA'B' vuông tại B ' có

Thể tích khối lăng trụ là

NV
7 tháng 8 2021

Gọi H là trung điểm BC \(\Rightarrow AH\perp BC\) và \(AH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Áp dụng định lý Pitago cho tam gaics vuông AA'H:

\(A'H=\sqrt{A'A^2-AH^2}=\dfrac{3a}{2}\)

\(V=A'A.S_{ABC}=\dfrac{3a}{2}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{3}}{8}\)