K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

Đáp án B

Sử dụng định nghĩa khối đa diện đều.

Khối đa diện đều là một khối đa diện lồi có hai tính chất sau đây:

- Các mặt là những đa giác đều và có cùng số cạnh.

- Mỗi đỉnh là đỉnh chung của cùng một số cạnh.

Từ định nghĩa khối đa diện đều ta thấy A, C, D đúng. Vậy B sai.

21 tháng 6 2017

Chọn D

Gọi tổng số các mặt của (H) là m và tổng số các cạnh của (H) là c.

Ta có: 2 ( p 1 + p 2 + … + p m ) + m = 2 c . Trong đó mỗi mặt nào đó có số cạnh là  2 p i + 1 ,   i = 1 , … , m

Do đó m chia hết cho 2. Hơn nữa có ít nhất một mặt ngũ giác nên tổng số mặt lớn hơn 5, do đó, tổng số cạnh lớn hơn 9 và tổng số đỉnh lớn hơn 5.

Hình chóp có đáy là ngũ giác của tổng số mặt là một số chẵn.

24 tháng 3 2018

Đáp án C

Xem lý thuyết SGK.

8 tháng 2 2019

Đáp án A

Nếu số mặt là 6 dễ thấy số cạnh là 9, nếu số mặt là 4 thì số cạnh là 6 do đó (2) sai.

2 tháng 5 2018

9 tháng 3 2018

Chọn C

17 tháng 3 2017

Đáp án D

Đối với mỗi khối đa diện ta kí hiệu Đ là số đỉnh, C là số cạnh, M là số mặt và đa diện đều đó thuộc loại n ; p  (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung của p cạnh) thì p Đ = 2 C = n M .  

Gọi khối đa diện thuộc loại n ; p  (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung của p cạnh)

Theo đề bài ta có: p=3.

Khi đó áp dụng công thức p Đ = 2 C = n M . Trong đó Đ, C, M lần lượt là số đỉnh, số cạnh và số mặt của khối đa diện.

3 Đ = 2 C ⇒ Đ = 2 C 3 .

Do đó Đ là số chẵn.

24 tháng 3 2017

Đáp án là .D...

Gọi số mặt là M, số cạnh là C. Mỗi mặt sẽ có 5 cạnh tổng thể ta có 5M cạnh tuy nhiên mỗi cạnh nhắc lại 2 lần nên do đó ta có  5 M = 2 C ⇒ C ⋮ 5.

31 tháng 8 2017

Chọn D.

Phương pháp: Ta có thể sử dụng phương pháp loại trừ.

Cách giải: Ta thấy hình chóp ngũ giác thỏa mãn giả thiết nhưng không thỏa mãn các phương án A, B, C. Nên phương án D phù hợp.

27 tháng 7 2017

Đáp án đúng : C