Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.
Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.
Trong tam giác vuông SAB' ta có:
Chọn B
Lấy M ∈ S B , N ∈ S C thỏa mãn SM=SN=SA=a ⇒ S M S B = 1 2 S N S C = 1 4
Theo giả thiết: A S B ^ = B S C ^ = C S A ^ = 60 o ⇒ S . A M N là khối tứ diện đều cạnh a.
Do đó: V S . A M N = a 3 2 12
Mặt khác:
V S . A M N V S . A B C = S M S B . S N S C = 1 2 . 1 4 = 1 8 ⇒ V S . A B C = 8 V S . A M N = 2 a 3 2 3
Chọn A
Gọi O là trọng tâm tam giác đều ABD và I là trung điểm BD thì:
Tam giác ICD vuông I có
=> O và C đối xứng nhau qua đường thẳng BD
Tam giác SAC vuông tại A có SN. SC=SA²
Tam giác ABC có và AC²=AB²+BC²
=> tam giác ABC vuông tại B
Lại có tam giác SAB vuông nên M là trung điểm SB
Mặt khác
Chọn B
Ta có B C ⊥ S M . Gọi H là hình chiếu vuông góc của A trên SM. Do
và FE đi qua H.
Vậy H là trung điểm cạnh SM. Suy ra tam giác SAM vuông cân tại A
⇒ S A = a 3 2 V S A B C = 1 3 . a 3 2 . a 2 3 4 = a 3 8
Chọn D
Thể tích khối chóp S. ABC là:
Do SA=AB=AC=a nên các tam giác SAC, SAB cân tại A.
Theo đề bài M, N là hình chiếu của A trên SB, SC nên M, N lần lượt là trung điểm SB, SC.
Khi đó:
Vậy thể tích khối chóp A. BCNM là:
Chọn A
Gọi B' trên SB sao cho S B ' = 2 3 S B và C' trên SC sao cho S C ' = 2 3 S C .
Khi đó SA=SB'=SC'=2 => S. AB'C' là khối tứ diện đều.
Cách khác: