\(\frac{r}{a}\le\frac{\sqrt{2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 5 2021

\(AB=c,AC=b\).

\(r=\frac{S}{p}=\frac{\frac{bc}{2}}{\frac{a+b+c}{2}}=\frac{bc}{a+b+c}\).

\(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\Leftrightarrow\frac{bc}{a\left(a+b+c\right)}\le\frac{\sqrt{2}-1}{2}\Leftrightarrow2bc\le\left(\sqrt{2}-1\right)a\left(a+b+c\right)\)

\(\Leftrightarrow2bc+a\left(a+b+c\right)\le\sqrt{2}a\left(a+b+c\right)\)

\(\Leftrightarrow a^2+2bc+ab+ac\le\sqrt{2}a\left(a+b+c\right)\)

\(\Leftrightarrow\left(b+c\right)^2+ab+ac\le\sqrt{2}a\left(a+b+c\right)\)

\(\Leftrightarrow\left(b+c\right)\left(a+b+c\right)\le\sqrt{2}a\left(a+b+c\right)\)

\(\Leftrightarrow b+c\le\sqrt{2}a\)

Bđt cuối đúng do \(b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}a\)mà ta biến đổi tương đương nên bđt ban đầu cũng đúng. 

Do đó ta có đpcm. 

2 tháng 10 2017

Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}.AB.r+\frac{1}{2}.BC.r=\frac{1}{2}\)

\(AB+BC+CA.r=pr\)

P/s: Ko chắc

12 tháng 8 2020

Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)

ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)

Dau = xay ra khi b=c hay tam giac ABC vuong can tai A

8 tháng 12 2021

A B C I O O'

1/ Ta có

IB=IA=IC (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến hai tiếp điểm bằng nhau

=> tg IAB và tg IAC cân tại I \(\Rightarrow\widehat{IBA}=\widehat{IAB}\) và \(\widehat{ICA}=\widehat{IAC}\)

Xét tg IAB có \(\widehat{AIB}=180^o-\left(\widehat{IBA}+\widehat{IAB}\right)=180^o-2.\widehat{IAB}\) (1)

Xét tg IAC có \(\widehat{AIC}=180^o-\left(\widehat{IAC}+\widehat{ICA}\right)=180^o-2.\widehat{IAC}\) (2)

Công 2 vế của (1) và (2)

\(\Rightarrow\widehat{AIB}+\widehat{AIC}=360^o-2\left(\widehat{IAB}+\widehat{IAC}\right)\)

\(\Rightarrow\widehat{BIC}=180^o=360^o-2\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\) => tg ABC vuông tại A

2/

Ta có

tg AIB cân tại I (cmt)

\(OI\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm)

=> IO là phân giác của \(\widehat{AIB}\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{\widehat{AIB}}{2}\) (trong tg cân đường cao xp từ đỉnh đồng thời là đường phân giác)

C/m tương tự ta cũng có \(\widehat{AIO'}=\widehat{CIO'}=\frac{\widehat{AIC}}{2}\)

\(\Rightarrow\widehat{AIO}+\widehat{AIO'}=\widehat{OIO'}=\frac{\widehat{AIB}+\widehat{AIC}}{2}=\frac{180^o}{2}=90^o\) => tg OIO' vuông tại I

3/

Hai đường tròn tiếp xúc ngoài thì đường nối tâm hai đường tròn đi qua điểm tiếp xúc => O, A, O' thẳng hàng

Xét tg vuông OIO' có

\(IA^2=OA.O'A\) (trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền) \(\Rightarrow IA=\sqrt{OA.OA'}=\sqrt{R.R'}\)

Ta có IB=IA=IC (cmt) => \(IA=\frac{BC}{2}\Rightarrow BC=2.IA=2\sqrt{R.R'}\)

27 tháng 10 2019

r r r A B C M N P I

Gọi M, N, P lần lượt là tiếp điểm của (I;r) với AB; BC; AC

Có: \(AB+AC-BC=AM+MB-BN-NC+CP+PA\)

Mà \(MB=BN\)\(NC=CP\)\(AM=PA\)

=> \(AB+AC-BC=2AM\)

Xét tứ giác MIPA có 3 góc vuông => MIPA là hình chữ nhật

=> \(AM=IP=r\)

=> \(r=AM=\frac{AB+AC-BC}{2}\)

11 tháng 4 2020

Vẽ đường cao AH của \(\Delta\)ABC

Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)

Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC

Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)

\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)

\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)

Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:

\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)

Do đó: 

\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)

Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)