K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

Gọi E và F lần lượt là tiếp điểm của AC, BC với (I).

Đặt \(AD=AE=a;BD=BF=b;CE=CF=c\)

Vì \(CA.CB=2DA.DB\left(gt\right)\)\(\Rightarrow\left(c+a\right)\left(c+b\right)=2ab\Rightarrow c^2+bc+ac+ab=2ab\Rightarrow c^2+bc+ac=ab\)

\(\Rightarrow2c^2+2bc+2ac=2ab\Rightarrow c^2+2bc+b^2+c^2+2ac+a^2=a^2+2ab+b^2\)

\(\Rightarrow\left(c+b\right)^2+\left(c+a\right)^2=\left(a+b\right)^2\Rightarrow BC^2+AC^2=AB^2\)

\(\Rightarrow\Delta ABC\)vuông tại C theo định lí Pytago đảo. 

Vậy ta có đpcm.

NV
10 tháng 1 2022

Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)

Gọi các tiếp điểm với AB và AC là E và F

Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:

\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)

Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)

\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)

\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)

Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)

\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)

\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)

NV
10 tháng 1 2022

undefined

26 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi E và F lần lượt là tiếp điểm của đường tròn với AD và AC

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AE = AF

BE = BD

CD = CF

BD = BC + CD

BE = AB – AE

Suy ra: BD + BE = AB + BC – (AE + CD)

= AB + BC – (AE + CE)

= AB + BC – AC

Suy ra: BD = (AB + BC - AC)/2

Lại có: CD = BC – BD

CF = AC = AF

Suy ra: CD + CF = BC + AC – (BD + AF)

= BC + AC – (BE + AE)

= BC + AC – BA

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy S A B C  = BD.DC.

20 tháng 6 2022

sao k chụp ht bài luôn

 

13 tháng 11 2016

Gọi E, F lần lượt là tiếp điểm của đường tròn đã cho với các cạnh AB, AC. Đặt AE = AF = x. Ta có BD = BE, CF = CD. Từ đó ta có:

AB.AC = ( x + BD )( x + CD ) = x2 + ( BD + DC )x + BD.CD (1)

Do ABC là tam giác vuông nên theo định lý Pytago, ta có:

AB2 + AC2 = BC2 trở thành ( x + BD )2 + ( x + CD )2 = ( DB + DC )2  <=> ( x2 + ( BD + DC )x) = BD.DC <=> ( x + BD )( x + CD ) = 2BD.CD (2).

Từ (1), (2) suy ra đpcm.

25 tháng 1 2017

cho 1 hinh duoc tao bang nua hinh tron co  duong tron 2 dm va 1 hinh tam giac co duong cao 3dm,day2dm

lam on hay giup minh nhe! co giao minh sap kiem tra rui. cam on

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

19 tháng 7 2021

Kẻ \(BE\bot IK,CF\bot IK\)

Vì AK,AI là tiếp tuyến \(\Rightarrow\Delta AKI\) cân tại A \(\Rightarrow\angle AKI=\angle AIK\)

\(\Rightarrow\angle BKE=\angle CIF\)

Xét \(\Delta BEK\) và \(\Delta CFI:\) Ta có: \(\left\{{}\begin{matrix}\angle BKE=\angle CIF\\\angle BEK=\angle CFI=90\end{matrix}\right.\)

\(\Rightarrow\Delta BEK\sim\Delta CFI\left(g-g\right)\Rightarrow\dfrac{BE}{CF}=\dfrac{BK}{CI}\)

Vì BK,BH là tiếp tuyến \(\Rightarrow BH=BK\)

Vì CI,CH là tiếp tuyến \(\Rightarrow CI=CH\)

\(\Rightarrow\dfrac{BK}{CI}=\dfrac{BH}{CH}\Rightarrow\dfrac{BE}{CF}=\dfrac{BH}{CH}\)

Vì \(BE\parallel HD\parallel CF(\bot IK)\) \(\Rightarrow\dfrac{BH}{CH}=\dfrac{ED}{DF}\Rightarrow\dfrac{BE}{CF}=\dfrac{ED}{DF}\)

Xét \(\Delta BED\) và \(\Delta CFD:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BE}{CF}=\dfrac{DE}{DF}\\\angle BED=\angle CFD=90\end{matrix}\right.\)

\(\Rightarrow\Delta BED\sim\Delta CFD\left(c-g-c\right)\Rightarrow\angle BDE=\angle CDF\)

mà \(\angle AKI=\angle AIK\Rightarrow\angle AKI-\angle BDE=\angle AIK-\angle CDF\)

\(\Rightarrow\angle ABD=\angle ACD\)

undefined

19 tháng 7 2021

thanks