Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\text{Gọi đt cần tìm là }\left(d\right):y=ax+b\\ \text{Theo đề ta có: }\left\{{}\begin{matrix}a=2;b\ne-3\\\dfrac{1}{3}a+b=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=2x+\dfrac{2}{3}\\ b,\text{Gọi đt cần tìm là }\left(d'\right):y=ax+b\\ B\left(\dfrac{2}{3};0\right)\text{ và }A\left(0;3\right)\in\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{9}{2}\\b=3\end{matrix}\right.\\ \Leftrightarrow\left(d'\right):y=-\dfrac{9}{2}x+3\)
tiếp xúc với (P) chứ bạn
Gọi ptđt (d) có dạng \(y=ax+b\)
<=> (d) đi qua A(-2;2) <=> 2 = -2a + b (1)
Hoành độ giao điểm (P); (d) tm pt
\(\dfrac{1}{2}x^2+ax+b=0\)
\(\Delta=a^2-\dfrac{4b}{2}=a^2-2b\)
Để (P) tiếp xúc với (d) khi delta = 0
\(a^2-2b=0\Leftrightarrow b=\dfrac{a^2}{2}\)(2)
Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}-2a+b=2\\b=\dfrac{a^2}{2}\end{matrix}\right.\)
bạn chứ giải hệ bằng pp thế nhé
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1
Do đó Q=x2+y2=(-1)2+12=2
Phần a dễ bạn tự làm nha!!! :))
b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)
Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)
\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)
\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)
\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)
\(\Leftrightarrow2m+2\sqrt{2m}=0\)
\(\Leftrightarrow m+\sqrt{2m}=0\)
\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)
Vậy: m = 0
=.= hk tốt!!
a) Khi m=1 thì pt<=>x2-4x+2=0
Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)
b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1
Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)
do d đi qua B =>ta có
0=3a+b(1)
lại có: phương trình hoành độ:
\(x^2=ax+b\Rightarrow x^2-ax-b=0\)
xét den ta:\(\Delta=a^2+4b\)
mà d tiếp xúc với P
=> a^2+4b=0(2)
từ 1 và 2 =>a,b rồi thay vào y=ax+b
=>pt
cách làm của mình cũng giống vậy nhưng ra a=0;b=0 hình như hơi vô lí nên ms hỏi các bn và deta=9a^2+4 mà