Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Hoành độ giao điểm tm pt
\(x^2-\left(m+4\right)x+4m=0\)
\(\Delta=\left(m+4\right)^2-4.4m=m^2+8m+16-16m=\left(m-4\right)^2\)
Để pt có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb khi m khác 4
b, Thay m = -2 vào ta được
\(x^2-2x-8=0\Leftrightarrow\left(x-1\right)^2-9=0\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\Leftrightarrow x=4;x=-2\)
Với x = 4 => y = 16 ; x = -2 => y = 4
Vậy với m = -2 thì (P) cắt (d) tại A(4;16) ; B(-2;4)
b: Thay x=-3 và y=0 vào y=(m-2)x+3, ta được:
-3m+6+3=0
=>m=3
a) Để đường thẳng (d) đi qua gốc tọa độ thì m + 1 = 0 => m = 1
Vậy m=1 thì đường thẳng (d) đi qua gốc tọa độ
b) Thay x = 3; y = 4 vào đường thẳng (d) ta được:
4 = (m + 1).3 - 2m + 1
<=> 3m + 3 -2m +1 - 4 = 0
<=> m = 0
Vậy m = 0 thì đường thẳng (d) đi qua điểm A(3;4)
Sorry vì mik ko vẽ được đồ thị cho bạn
c) Đường thẳng vừa vẽ được: y = x + 1
Phương trình hoành độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
x + 1 = -2x + 4
<=> x + 2x = 4 - 1
<=> 3x = 3
<=> x = 1
Tung độ của 2 đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
y = 1 + 1
<=> y = 2
Vậy tọa độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là (1;2)
Học tốt. Nhớ k cho mik nha.
Lời giải:
P/s: Làm nhưng k biết có đúng hay không!!! (^-^)
Gọi giao điểm mà đồ thị hàm số (y) cắt trục tung là A
Theo bài ra ta có hoành độ của A là 1
Vì A nằm trên trục tung nên hoành độ của A là 0
Do đó điểm A = ( 0 , 1 )
A thuộc đồ thị hàm số (y) nên: ⇒ (m+1)x -2m+1(d)\(\Rightarrow\)m = − 2
~Học tốt!~
a: Khi m=4 thì (d): y=-x+4
PTHĐGĐ là:
1/2x^2=-x+4
=>x^2=-2x+8
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
Khi x=2 thì y=1/2*2^2=2
Khi x=-4 thì y=1/2(-4)^2=8
a) đk : m \(\ne\pm\sqrt{2}\)
m = -2 thì ( d ) : \(y=-x\) ; ( d' ) : \(y=2x+1\)
gọi N ( x0 ; y0 ) là giao điểm của 2 đường thẳng (d ) và (d ' )
\(\Rightarrow\)( d) : y0 = -x0 ; ( d' ) : y0 = 2x0 + 1
\(\Rightarrow-x_0=2x_0+1\Rightarrow x_0=\frac{-1}{3}\)
\(\Rightarrow y_0=\frac{1}{3}\)
Vậy tọa độ giao điểm của 2 đường thẳng trên là \(N\left(\frac{1}{3};\frac{1}{3}\right)\)
b) ( d ) // ( d' ) \(\Leftrightarrow\hept{\begin{cases}-1=m^2-2\\m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}\Leftrightarrow}m=1}\)
Vậy m = 1 thì ( d) // ( d' )
a) Khi m=-2
=>y=-x-2+2=>y=-x (d)
y=[(-2)²-2]x+1=>y=2x+1 (d')
=>2x+1=-x =>3x=-1 =>x=-1/3
=>y=1/3
Vậy toạ độ giao điểm của chúng là x=-1/3 ;y=1/3
b) Để (d) song song (d')
=> -1=m²-2 =>m²=1 =>m=±1
Và m+2≠1 =>m≠-1
=>m=1
Vậy m=1
P/s: Bài này thì không có chắc tại cũng mới học qua
\(a)\) Hàm số trên nghịch biến
\(\Leftrightarrow3m-1< 0\)
\(\Leftrightarrow3m< 1\)
\(\Leftrightarrow m< \frac{1}{3}\)
Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến
\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)
\(\Leftrightarrow m-2=0\)
\(\Leftrightarrow m=2\)
\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths
Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)
\(\Leftrightarrow-3m+1+m-2=1\)
\(\Leftrightarrow-2m-1=1\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)
\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)
Ta có: \(y=2.1-1\)
\(\Leftrightarrow y=2-1=1\)
\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)
Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)
Ta có: \(\left(3m-1\right)1+m-2=1\)
\(\Leftrightarrow3m-1+m-2=1\)
\(\Leftrightarrow4m-3=1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)
\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)
\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)
\(\Leftrightarrow3m-1\ne-2\)
\(\Leftrightarrow3m\ne3\)
\(\Leftrightarrow m\ne1\)
Vậy \(m\ne1\)
\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)
\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung
\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)
Vậy không tìm được giá trị \(x\)nào TMĐK
a: Để hai đường song thì m+3=4
=>m=1
c: (d): y=4x+4
Tọa độ giao điểm là:
4x+4=x-1 và y=x-1
=>3x=-5 và y=x-1
=>x=-5/3 và y=-8/3
\(y=\left(m-2\right)x+2\)(d1)
Thay m = 4 vào đồ thị hàm số (d1) ta được:
\(y=\left(4-2\right)x+2\)
\(\Rightarrow y=2x+2\)
Cho x = 0 => y = 2 => A(0 ; 3)
y = 0 => x = -1 => B(-1 ; 0)
Bạn tự vẽ hàm số nhé!